Numerical Study of the Effectiveness of Explosion-Proof Water Barriers in Case of an Emergency Methane Explosion in Coal Mines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of numerical simulation of the damping of an air shock wave from an emergency methane explosion in a mine are presented. The results of an analysis of the effectiveness of using water barriers to reduce the intensity of air shock wave, depending on their length, are presented. The effect of the gradual deposition of water droplets from the water barrier onto the walls of the mine on the intensity of the shock wave passing through the barrier has been determined. The rate of precipitation of water droplets from the gas-droplet mixture formed by the interaction of the shock wave with the water barrier has little effect on the intensity of the shock wave passing through the barrier.

Full Text

Restricted Access

About the authors

A. Yu. Kraynov

Tomsk State University

Author for correspondence.
Email: akrainov@ftf.tsu.ru
Russian Federation, Tomsk

O. Yu. Lukashov

SHAKHTEXPERT-SYSTEMS LLC

Email: akrainov@ftf.tsu.ru
Russian Federation, Kemerovo

A. A. Oberemok

Tomsk State University

Email: akrainov@ftf.tsu.ru
Russian Federation, Tomsk

K. M. Moiseeva

Tomsk State University

Email: akrainov@ftf.tsu.ru
Russian Federation, Tomsk

N. F. Florya

Tomsk State University

Email: akrainov@ftf.tsu.ru
Russian Federation, Tomsk

Yu. V. Shalaev

Tomsk State University

Email: akrainov@ftf.tsu.ru
Russian Federation, Tomsk

References

  1. Valiulin S.V., Onischuk A.A., Zamashchikov V.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 291. https://doi.org/10.1134/S199079312102024X
  2. Rostechnadzor Order No. 506 dated 12/08/2020 “On Approval of Federal Standards and Regulations in the field of industrial safety “Instruction on Aerological Safety of Coal Mines” (registered with the Ministry of Justice of Russia on 12/29/2020 No. 61918). https://docs.cntd.ru/document/573264143
  3. Umnov A.E., Golik A.S., Paleev D.Yu., Shevtsov N.R. Prevention and localization of explosions in underground conditions [Preduprezhdenie i lokalizaciya vzryvov v podzemnyh usloviyah]. Moscow: Nedra, 1990.
  4. Petrukhin P.M., Netseplyaev M.I., Kachan V.N., Sergeev V.S. Prevention of dust explosions in coal mines [Preduprezhdenie vzryvov pyli v ugol’nyh shahtah]. Moscow: Nedra, 1974.
  5. Vasenin I.M., Schrager E.R., Krainov A.Yu., Lukashov O.Yu. and others. Mathematical modeling of gorenje and explosion of high-energy systems [Matematicheskoe modelirovanie goreniya i vzryva vysokoenergeticheskih sistem]. Tomsk: Publishing House of the Tomsk State University, 2006.
  6. Kusainov P.I., Mazepa E.E., Kraynov A.Yu., Lukashov O.Yu. // J. Phys. Conf. Ser. 2021. V. 1749. 012042. https://doi.org/10.1088/1742-6596/1749/1/012042
  7. Lukashov O.Yu., Krainov A.Yu., Oberemok A.A. // Bulletin of the VostNII Scientific Center for Industrial and Environmental Safety. 2024. № 1. P. 32.
  8. Paleev D.Yu., Vasenin I.M., Kosterenko V.N., etc. Shock waves during explosions in coal mines [Udarnye volny pri vzryvah v ugol’nyh shahtah]. Moscow: Publishing house “Mining”, LLC “Kimmeriysky Center”, 2011.
  9. Paleev D.YU., Lukashov O.YU., Kosterenko V.N., etc. Computer technologies for solving problems of the disaster management plan [Komp’yuternye tekhnologii dlya resheniya zadach plana likvidacii avarij]. M.: Izd-vo “Gornoe delo” OOO “Kimmerijskij centr”, 2011.
  10. Fabrikant N.Ya. Aerodynamics [Aerodinamika]. Moscow: Nauka Publ., 1964.
  11. Isaichenko V.P., Osipova V.A., Sukomel A.S. Heat Transfer [Teploperedacha]. Moscow: Energia Publ., 1975.
  12. Nigmatulin R.I. Dynamics of multiphase environments [Teploperedacha]. Part I. Moscow: Nauka Publ., 1987.
  13. Loitsyansky L.G. Mechanics of liquid and gas [Mekhanika zhidkosti i gaza]. Moscow: Nauka Publ., 1987.
  14. Ostrovsky G.M. Applied mechanics of non-natural environments [Prikladnaya mekhanika neodnorodnyh sred]. St. Petersburg: Nauka Publ., 2000.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Pressure distributions along the excavation length at fixed time moments with a period of 1 s from the moment of methane-air mixture explosion (a) and at the time moment of 10 s (b). Dashed line - no water barriers, black - β = 0.0 m/s, grey - β = 10.0 m/s, Δ = 30 m.

Download (396KB)
3. Fig. 2. Pressure variation in time at a point 2000 m from the dead end. The designations are the same as in Fig. 1.

Download (134KB)
4. Fig. 3. Pressure distributions along the mine length at fixed time points with a period of 1 s from the moment of methane-air mixture explosion (a) and pressure changes in time at a point at a distance of 2000 m from the dead end (b). Solid thin line - no water barriers, dashed line - Δ = 10 m, solid thick line - Δ = 30 m, grey line - Δ = 60 m, β = 1 m/s.

Download (1012KB)

Copyright (c) 2025 Russian Academy of Sciences