Effect of Synthesis and Crystallization Conditions on the Composition and Structure of Europium(III) Mixed-Carboxylate Benzoate–Pentafluorobenzoate Complexes
- Autores: Shmelev M.A.1, Lebedev D.S.2, Chistyakov A.S.1, Voronina J.K.1, Efromeev L.M.1,2, Rogachev A.V.3, Sidorov A.A.1, Eremenkoa I.L.1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Faculty of Chemistry, HSE University
- MIREA — Russian technological university
- Edição: Volume 51, Nº 7 (2025)
- Páginas: 423-437
- Seção: Articles
- URL: https://modernonco.orscience.ru/0132-344X/article/view/688154
- DOI: https://doi.org/10.31857/S0132344X25070012
- EDN: https://elibrary.ru/KPJSDU
- ID: 688154
Citar
Texto integral



Resumo
In the present work, the influence of the nature of the solvate molecules and N-donor ligands on the structures of the benzoate–pentafluorobenzoate europium complexes was investigated. It was established that the reaction of europium benzoate (bz) and pentafluorobenzoate (pfb) with 1,10-phenanthroline (phen) in acetonitrile in the presence of toluene, o-xylene, or dichloromethane leads to the formation of compounds [Eu2(phen)2(pfb)4(bz)2]·4C6H5CH3 (I), [Eu2(phen)2(pfb)4(bz)2]·4C6H4(CH3)2 (II), and [Eu2(phen)2(pfb)4 (bz)2]·2.898CH2Cl2 (III), respectively, which possess similar structures. Using quinoline (quin) as the N-donor ligand, mixed-carboxylate coordination polymer crystals [Eu(H₂O)(pfb)2(bz)]n·2n(quin) (IV) were obtained in good yield. The synthesized compounds were characterized by single-crystal X-ray diffraction, IR spectroscopy, and CHN elemental analysis. Non-covalent interactions were analyzed by Hirshfeld surface analysis.
Texto integral

Sobre autores
M. Shmelev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: shmelevma@yandex.ru
Rússia, Moscow
D. Lebedev
Faculty of Chemistry, HSE University
Email: shmelevma@yandex.ru
Rússia, Moscow
A. Chistyakov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: shmelevma@yandex.ru
Rússia, Moscow
J. Voronina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: shmelevma@yandex.ru
Rússia, Moscow
L. Efromeev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Faculty of Chemistry, HSE University
Email: shmelevma@yandex.ru
Rússia, Moscow; Moscow
A. Rogachev
MIREA — Russian technological university
Email: shmelevma@yandex.ru
Rússia, Moscow
A. Sidorov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: shmelevma@yandex.ru
Rússia, Moscow
I. Eremenkoa
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: shmelevma@yandex.ru
Rússia, Moscow
Bibliografia
- Singh P., Kachhap S., Singh P., Singh S.K. // Coord Chem Rev. 2022. V. 472. № 214795.
- Marin R., Jaque D. // Chem. Rev. 2021. V. 121. № 3. P. 1425.
- Singh A.K. // Coord Chem Rev. 2022. V. 455. № 214365.
- Chen C., Li C., Shi Z. // Adv. Sci. 2016. V. 3. № 10. № 1600029.
- Crawford S.E., Ohodnicki P.R., Baltrus J.P. // J. Mater. Chem. C. 2020. V. 8. P. 7975.
- Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. Р. 4296.
- Peng X.X., Wang M.X., Zhang J.L. // Coord Chem Rev. 2024. V. 519. P. 216096.
- Paderni D., Giorgi L., Fus V. et al. // Coord Chem Rev. 2021. V. 429. P. 213639.
- Li S., Zhou L., Zhang H.// Light Sci Appl. 2022. V. 11. P. 177.
- Barkanov A., Zakharova A., Vlasova T. et al. // J. Mater. Sci. 2022. V. 57. P. 8393.
- Ferdiana N.A., Bahti H.H., Kurnia D., Wyantuti S. // Sens. Bio-Sens. Res. 2023. V. 41. P. 100573.
- Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 830.
- Lima N.B.D., Silva A.I.S., Gonçalves S.M.C., Simas A.M. // J. Lumin. 2016. V. 170. P. 505.
- Melo L.L.L.S., Castro Jr. G.P., Gonçalves S.M.C. // RSC Adv. 2017. V. 7. № 34. P. 20811.
- Melo L.L.L.S., Castro G.P., Gonçalves S.M.C. // Inorg. Chem. 2019. V. 58. № 5. P. 3265.
- Gogoleva N.V., Shmelev M.A., Chistyakov A.S. // Mendeleev Commun. 2024. V. 34. № 4. P. 484.
- Shmelev M. A., Gogoleva N. V., Ivanov V. K. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 539. https://doi.org/10.1134/S1070328422090056
- Puntus L., Lyssenko K. // J. Rare Earths. 2008. V. 26. № 2. P. 146.
- Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
- Silva A.I.S., Santos V.F.C., Lima N.B.D. et al. // RSC Adv. 2016. V. 6. P. 90934.
- Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
- Voronina J.K., Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. № 4. Р. 678.
- Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 224. https://doi.org/10.1134/S1070328422040042
- Zhang S., Chen A., An Y., Li Q. // Matter. 2024. V. 7. № 10. P. 3317.
- Wang L., Deng J., Jiang M. et al // J. Mater. Chem. A. 2023. V. 11. P. 11235.
- Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. Р. 5689.
- Larionov S.V., Glinskaya L.A., Leonova T.G. et al. // Russ. J. Coord. Chem. 2009. V. 35. P. 798. https://doi.org/10.1134/S1070328409110025
- Khiyalov M.S., Amiraslanov I.R., Musaev F.N., Mamedov Kh.S. // Sov. J. Coord. Chem. 1982. V. 8. P. 548.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
- Thomas S.P., Spackman P.R., Jayatilaka D., Spackman M.A. // J. Chem. Theor. Comput. 2018. V. 14. P. 1614.
- Shmelev M.A., Levina A.A., Chistyakov A.S. et al. // Mendeleev Commun. 2025. V. 35. № 1. P. 35.
- Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. № 8. P. 1544.
- Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemistrySelect. 2020. V. 5. № 28. P. 8475.
Arquivos suplementares
