Synthesis and study of cytotoxicity of 3β-acetoxyurs-12-en-28-oyl-thiourea derivatives
- Authors: Popov S.A.1, Borisova T.D.1,2, Shults E.E.1, Marenina М.К.1, Meshkova Y.V.1, Tolstikova T.G.1
-
Affiliations:
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State Technical University
- Issue: Vol 51, No 3 (2025)
- Pages: 418-431
- Section: ОБЗОРНАЯ СТАТЬЯ
- URL: https://modernonco.orscience.ru/0132-3423/article/view/686914
- DOI: https://doi.org/10.31857/S0132342325030053
- EDN: https://elibrary.ru/KQDCCS
- ID: 686914
Cite item
Abstract
The interaction of 3β-acetoxyurs-12-en-28-oyl chloride with potassium rhodanide afforded 3β-acetoxyurs-12-en-28-oyl isothiocyanate. A series of substituted 3β-acetoxy-urs-12-en-28-oyl-thioureas was synthesised in yields of 69–88% by condensation of triterpene acyl isothiocyanate with a series of amino derivatives. The CuAAC cycloaddition reaction of N-(2-azidoethylcarbamothioyl)-3-acetoxyurs-12-en-28-oyl-amide with propargyl alcohol and 3-(prop-2-inyloxy)-4,5-((R,S)-methoxymethylenedioxy)-benzoate led to the formation of hybrid acylthioureas containing a 1,2,3-triazole linker in 72 and 75% yields. In CuAAC reactions of N-(prop-2-ynylcarbamothioyl)-3β-acetoxyurs-12-en-28-oylamide with substituted acylthiourea azides containing 1,2,3-triazole were isolated in moderate yields of 48–62%. The use of one-pot-reactor version of the synthesis with the preparation of substituted (1H-1,2,3-triazol-4-yl)methanamines in the reaction of propargylamine with substituted azides followed by condensation with 3β-acetoxyurs-12-en-28-oyl isothiocyanate increased the yield of 1,2,3-triazole-containing acylthioureas to 65–85%. Polar triterpene acylthioureas containing carboxyl or alcohol groups exhibited high inhibitory activity against HepG2 cells, significantly superior to the parent compound ursolic acid, and were also more selective than the drug doxorubicin. Among the acylthioureas, products of CuAAC cycloaddition, the most active was the polar derivative with (1H-1,2,3-triazol-4-yl)methanol substituent, which was cytotoxic to all cells tested, including the non-tumour control, but superior in selectivity to doxorubicin. Ursane hybrids with acylthiourea derivatives are of interest for further investigation as promising antitumour agents.
Keywords
Full Text

About the authors
S. A. Popov
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: spopov@nioch.nsc.ru
Russian Federation, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
T. D. Borisova
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University
Email: spopov@nioch.nsc.ru
Russian Federation, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090; prosp. K. Marksa 20, Novosibirsk 630073
E. E. Shults
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: spopov@nioch.nsc.ru
Russian Federation, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
М. К. Marenina
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: spopov@nioch.nsc.ru
Russian Federation, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
Yu. V. Meshkova
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: spopov@nioch.nsc.ru
Russian Federation, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
T. G. Tolstikova
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: spopov@nioch.nsc.ru
Russian Federation, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
References
- Xing Y.L., Bi L.W., Zhao Z.D., Xia T.J. // Adv. Mater. Res. 2013. V. 781. P. 787–791. https://doi.org/10.4028/www.scientific.net/AMR.781-784.787
- Jäger S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. // Molecules. 2009. V. 14. P. 2016–2031. https://doi.org/10.3390/molecules14062016
- López-Hortas L., Pérez-Larrán P., González-Muñoz M.J., Falqué E., Domínguez H. // Food Res. Int. 2018. V. 103. P. 130–149. https://doi.org/10.1016/j.foodres.2017.10.028
- Pironi A.M., de Araújo P.R., Fernandes M.A., Salgado H.R.N., Chorilli M. // Crit. Rev. Anal. Chem. 2018. V. 48. P. 86–93. https://doi.org/10.1080/10408347.2017.1390425
- Nistor G., Trandafirescu C., Prodea A., Milan A., Cristea A., Ghiulai R., Racoviceanu R., Mioc A., Mioc M., Ivan V. // Molecules. 2022. V. 27. P. 6552. https://doi.org/10.3390/molecules27196552
- Wei Z.-Y., Chi K.-Q., Wang K.-S., Wu J., Liu L.-P., Piao H.-R. // Bioorg. Med. Chem. Lett. 2018. V. 28. P. 1797–1803. https://doi.org/10.1016/j.bmcl.2018.04.021
- Wang W., Lei L., Liu Z., Wang H., Meng Q. // Molecules. 2019. V. 24. P. 877. https://doi.org/10.3390/molecules24050877
- Viji V., Helen A., Luxmi V.R. // Br. J. Pharmacol. 2011. V. 162. P. 1291–1303. https://doi.org/10.1111/j.1476-5381.2010.01112.x
- Luan T., Jin C., Jin C.-M., Gong G.-H., Quan Z.-S. // J. Enzyme Inhib. Med. Chem. 2019. V. 34. P. 761–772. https://doi.org/10.1080/14756366.2019.1584622
- Larik F.A., Shah M.S., Saeed A., Shah H.S., Channar P.A., Bolte M., Iqbal J. // Int. J. Biol. Macromol. 2018. V. 116. P. 144–150. https://doi.org/10.1016/j.ijbiomac.2018.05.001
- Aly A.A., Ahmed E.K., El-Mokadem K.M., Hegazy M.E.A.F. // J. Sulfur Chem. 2007. V. 28. P. 73–93. https://doi.org/10.1080/17415990601124691
- Saeed A., Flörke U., Erben M.F. // J. Sulfur Chem. 2014. V. 35. P. 318–355. https://doi.org/10.1080/17415993.2013.834904
- Saeed A., Erben M.F., Bolte M. // Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013. V. 102. P. 408– 413. https://doi.org/10.1016/j.saa.2012.10.043
- Mahmood A., Shah S.J.A., Iqbal J. // Eur. J. Med. Chem. 2022. V. 231. P. 114162. https://doi.org/10.1016/j.ejmech.2022.114162
- Asegbeloyin J.N., Oyeka E.E., Okpareke O., Ibezim A. // J. Mol. Struct. 2018. V. 1153. P. 69–77. https://doi.org/10.1016/j.molstruc.2017.09.093
- Li Z., Zhang Y., Wang Y. // Phosphorus, Sulfur Silicon Relat. Elem. 2003. V. 178. P. 293–297. https://doi.org/10.1080/10426500307952
- del Campo R., Criado J.J., Gheorghe R., González F.J., Hermosa M.R., Sanz F., Manzano J.L., Monte E., Rodrı́guez-Fernández E. // J. Inorg. Biochem. 2004. V. 98. P. 1307–1314. https://doi.org/10.1016/j.jinorgbio.2004.03.019
- Huang X., Huang R., Liao Z., Pan Y., Gou S., Wang H. // Eur. J. Med. Chem. 2016. V. 108. P. 381– 391. https://doi.org/10.1016/j.ejmech.2015.12.008
- Huang X.-C., Wang M., Pan Y.-M., Yao G.-Y., Wang H.-S., Tian X.-Y., Qin J.-K., Zhang Y. // Eur. J. Med. Chem. 2013. V. 69. P. 508–520. https://doi.org/10.1016/j.ejmech.2013.08.055
- Liu J., Lu Y., Wang J., Bi L., Zhao Z. // Chinese J. Org. Chem. 2017. V. 37. P. 731–738. https://doi.org/10.6023/cjoc201610017
- Baltina L.A., Davydova V.A., Tolstikova T.G., Zarudii F.A., Kondratenko R.M., Tolstikov G.A. // Pharm. Chem. J. 1991. V. 25. P. 705–710.
- Popov S., Qi Z., Wang C., Shults E. // J. Sulfur Chem. 2023. P. 523–541. https://doi.org/10.1080/17415993.2023.2193669
- Popov S.A., Semenova M.D., Baev D.S., Frolova T.S., Shestopalov M.A., Wang C., Qi Z., Shults E.E., Turks M. // Steroids. 2020. V. 162. P. 108698. https://doi.org/10.1016/j.steroids.2020.108698
- Sang S., Lapsley K., Rosen R.T., Ho C.-T. // J. Agric. Food Chem. 2002. V. 50. P. 607–609. https://doi.org/10.1021/jf0110194
- Tkachev A.V., Denisov A.Y. // Tetrahedron. 1994. V. 50. P. 2591–2598. https://doi.org/10.1016/S0040-4020(01)86975-1
- Qi Z., Xie P., Wang Z., Zhou H., Tao R., Popov S.A., Yang G., Shults E.E., Wang C. // Arab. J. Chem. 2024. V. 17. P. 105762. https://doi.org/10.1016/j.arabjc.2024.105762
Supplementary files
