Obtaining of active amino groups on a surface of a polyethylene terephthalate films and their quantitative evaluation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method has been developed for obtaining active amino groups on the surface of a polyethylene terephthalate (PET) substrate. A method has been developed to quantify the concentration and distribution of chemically accessible amino groups on the surface of a PET substrate using the cyanine dye Cy5 and digital fluorescence microscopy. Amino groups can be used for further chemical modification of the PET surface, grafting of various functional groups and covalent binding with biomolecules, which opens up prospects for widespread use of inexpensive PET as functional substrates in biochips, biosensors, “laboratory-on-a-chip” devices and other biotechnological applications.

全文:

受限制的访问

作者简介

G. Shtylev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

I. Shishkin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

S. Lapa

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

V. Shershov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

V. Barsky

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

S. Polyakov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

V. Vasiliskov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

O. Zasedateleva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

V. Kuznetsova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

A. Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: chud@eimb.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

参考

  1. Ahsan H. // Comp. Clin. Pathol. 2022. V. 31. P. 333– 345. https://doi.org/10.1007/s00580-021-03302-4
  2. Gnoth C., Johnson S. // Geburtshilfe Frauenheilkd. 2014. V. 74. P. 661–669. https://doi.org/10.1055/s-0034-1368589
  3. Mao X., Wang W., Du T.-E. // Sensors and Actuators B: Chemical. 2013. V. 186. P. 315320. https://doi.org/10.1016/j.snb.2013.05.083
  4. Rubina A.Yu., Pan’kov S.V., Dementieva E.I., Pen’kov D.N., Butygin A.V., Vasiliskov V.A., Chudinov A.V., Mikheikin A.L., Mikhailovich V.M., Mirzabekov A.D. // Anal. Biochem. 2004. V. 325. P. 92–106. https://doi.org/10.1016/j.ab.2003.10.010
  5. Gryadunov D., Dementieva E., Mikhailovich V., Nasedkina T., Rubina A., Savvateeva E., Fesenko E., Chudinov A., Zimenkov D., Kolchinsky A., Zasedatelev A. // Exp. Rev. Mol. Diagn. 2011. V. 11. P. 839–853. https://doi.org/10.1586/ERM.11.73
  6. Miller M.B., Tang Y.W. // Clin. Microbiol. 2009. V. 22. P. 611–633. https://doi.org/10.1128/CMR.00019-09
  7. Zhu H., Qian J. // Adv. Genet. 2012. V. 79. P. 123–155.
  8. Rother D., Sen T., East D., Bruce I.J. // Nanomedicine. 2011. V. 6. P. 281–300. https://doi.org/10.2217/nnm.10.159
  9. Akkoyun A., Bilitewski U. // Biosensors and Bioelectronics. 2002. V. 17. P. 655–664. https://doi.org/10.1016/S0956-5663(02)00029-5
  10. Tu Q., Wang J.-C., Zhang Y., Liu R., Liu W., Ren L., Shen S., Xu J., Zhao L., Wang J. // Rev. Anal. Chem. 2012. V. 31. P. 177–192. https://doi.org/10.1515/revac-2012-0016
  11. Hosseini S., Ibrahim F., Djordjevic I., Koolea L.H. // Analyst. 2014. V. 139. P. 2933–2943. https://doi.org/10.1039/c3an01789c
  12. Dimitrievska S., Maire M., Diaz-Quijada G.A., Robitaille L., Ajji A., Yahia L., Moreno M., Merhi Y., Rureau M. // Macromol. Biosci. 2011. V. 11. P. 493–502. https://doi.org/10.1002/mabi.201000390
  13. Miftakhov R.A., Lapa S.A., Shershov V.E., Zasedateleva O.A., Guseinov T.O., Spitsyn M.A., Kuznetsova V.E., Mamaev D.D., Lysov Yu.P., Barsky V.E., Timofeev E.N., Zasedatelev A.S., Chudinov A.V. // Biophysics. 2018. V. 63. P. 512–518. https://doi.org/10.1134/S0006350918040127
  14. Miftakhov R.A., Lapa S.A., Kuznetsova V.E., Zolotov A.M., Vasiliskov V.A., Shershov V.E., Surzhikov S.A., Zasedatelev A.S., Chudinov A.V. // Russ. J. Bioorg. Chem. 2021. V. 47. Р. 1345–1347. https://doi.org/10.1134/S1068162021060182
  15. Lapa S.A., Klochikhina E.S., Miftakhov R.A., Zasedatelev A.S., Chudinov A.V. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 1122–1125. https://doi.org/10.1134/S1068162021050290
  16. Лапа С.А., Мифтахов Р.А., Клочихина Е.С., Аммур Ю.И., Благодатских С.А., Шершовa В.Е., Заседателев А.С., Чудинов А.В. // Мол. биология. 2021. Т. 55. С. 944–955. https://doi.org/10.1134/S0026893321040063
  17. Zubtsov D.A., Savvateeva E.N., Rubina A.Yu., Pan’kov S.V., Konovalova E.V., Moiseeva O.V., Chechetkin V.R., Zasedatelev A.S. // Anal. Biochem. 2007. V. 368. P. 205–213. https://doi.org/10.1016/j.ab.2007.04.040
  18. Zolotov A.M., Miftakhov R.A., Ikonnikova A.Y., Lapa S.A., Kuznetsova V.E., Vasiliskov V.A., Shershov V.E., Zasedatelev A.S., Nasedkina T.V., Chudinov A.V. // Russ. J. Bioorg. Chem. 2022. V. 48. Р. 858–863. https://doi.org/10.1134/S1068162022040203
  19. Rendl M., Bönisch A., Mader A., Schuh K., Prucker O., Brandstetter T., Rühe J. // Langmuir. 2011. V. 27. P. 6116–6123. https://doi.org/10.1021/la1050833
  20. Ma Y., Liu L., Yang W. // Polymer. 2011. V. 52. P. 4159– 4173. https://doi.org/10.1016/j.polymer.2011.07.027
  21. Miftakhov R.A., Ikonnikova A.Yu., Vasiliskov V.A., Lapa S.A., Levashova A.I., Kuznetsova V.E., Shershov V.E., Zasedatelev A.S., Nasedkina T.V., Chudinov A.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1143–1150. https://doi.org/10.1134/S1068162023050217
  22. Mueller M., Bandl C., Kern W. // Polumers. 2022. V. 14. P. 608. https://doi.org/10.3390/ polym14030608
  23. Bui L.N., Thompson M., McKeown N.B., Romaschin A.D., Kalman P.G. // Analyst. 1993. V. 118. P. 463–474.
  24. Avny Y., Rebenfeld L. // J. Appl. Polymer Sci. 1986. V. 32. P. 4009–4025.
  25. Bech L., Meylheuc T., Lepoittevin B., Roger P. // J. Polymer Science. Part A: Polymer Chem. 2007. V. 45. P. 2172–2183. https://doi.org/10.1002/pola.21983
  26. Spitsyn M.A., Kuznetsova V.E., Shershov V.E., Emelyanova M.A., Guseinov T.O., Lapa S.A., Nasedkina T.V., Zasedatelev A.S., Chudinov A.V. // Dyes and Pigments. 2017. V. 147. P. 199–210. https://doi.org/10.1016/j.dyepig.2017.07.052
  27. Lysov Y., Barsky V., Urasov D., Urasov R., Cherepanov A., Mamaev D., Yegorov Y., Chudinov A., Surzhikov S., Rubina A., Smoldovskaya O., Zasedatelev A. // Biomed. Optics Express. 2017. V. 8. P. 4798–4810. https://doi.org/10.1364/BOE.8.004798
  28. Barsky V., Perov A., Tokalov S., Chudinov A., Kreindlin E., Sharonov A., Kotova E., Mirzabekov A. // J. Biomol. Screening. 2002. V. 7. P. 247–257. https://doi.org/10.1177/108705710200700308

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of chemical modification of the PET film surface.

下载 (71KB)
3. Fig. 2. Scheme of synthesis of fluorescent dye Cy5 and activated derivative of para-nitrophenyl ether of dye Cy5-pNP.

下载 (96KB)
4. Fig. 3. Micrograph of a PET substrate in the light of Cy5 dye fluorescence after amination with a 10% aqueous solution of ethylenediamine for 8 h at 70°C and binding of amino groups to the Cy5-pNP fluorescent dye. A graph of the signal distribution along the drawn line on the fluorescence image is shown.

下载 (304KB)

版权所有 © Russian Academy of Sciences, 2024