Formation of dense Ti-B-Fe system product obtained by self-propagating high-temperature synthesis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of obtaining a dense material of the Ti-B-Fe system in one stage during self-propagating high-temperature synthesis is studied. The influence of some process parameters on the densification of reaction products of the Ti-B-Fe system, which has high physical and mechanical characteristics, is studied. The maximum temperature developed in the combustion wave, using ferroboron alloys as initial reagents, annealing of initial powders, and preheating of the charge before self-propagating high-temperature synthesis are established to have the greatest influence on the formation of a nonporous product during the combustion of the Ti-B-Fe system.

Texto integral

Acesso é fechado

Sobre autores

O. Lepakovа

Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: O.Shkoda@dsm.tsc.ru
Rússia, Tomsk

O. Shkoda

Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: O.Shkoda@dsm.tsc.ru
Rússia, Tomsk

B. Braverman

Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: O.Shkoda@dsm.tsc.ru
Rússia, Tomsk

Bibliografia

  1. Гольдшмидт Х. Дж. Сплавы внедрения. Вып. 1. М.: Мир, 1971. 423 с.
  2. Серебрякова Т.И., Неронов В.А., Пешев П.Д. Высокотемпературные бориды. М.: Металлургия, 1991. 367 с.
  3. Cамсонов Г.В., Марковский Л.Я., Жигач А.Ф. и др. Бор, его соединения и сплавы. Киев: Изд-во Академии наук УССР, 1960. 590 с.
  4. Киффер Р., Бенезовский Ф. Твердые материалы. М.: Металлургия, 1968. 384 с.
  5. Merzhanov A.G., Rogachev A.S. // Pure and Appl. Chem. 1990. V. 64. P. 941. http://dx.doi.org/10.1351/pac199264070941
  6. Свойства, получение и применение тугоплавких соединений / Под ред. Т.Я. Косолаповой. М.: Металлургия, 1986. 928 с.
  7. Baumgartner H.R., Steiger R.A. // J. Amer. Ceram. Soc. 1984. V. 67. № 3. P. 207. https://doi.org/10.1111/j.1151-2916.1984.tb19744.x
  8. Hyjek P., Sulima I., Jaworska L. // Mater Trans A. 2019. V. 50. P. 3724. https://doi.org/10.1007/s11661-019-05306-w
  9. Yujiao K., Kazuhiro M., Zhefeng X., et al. // Mater Trans Volume. 2019. V. 60. № 12. https://doi.org/10.2320/matertrans.MT-M2019168
  10. Yangyang Sun, Hui Chang, Zhigang Fang, et al. // MATEC Web of Conferences. 2020. V. 321. P. 11029. https://doi.org/10.1051/matecconf/202032111029
  11. Kumar R., Liu L., Antonov M., et al. // Materials. 2021. V. 14. P. 1242. https://doi.org/10.3390/ma14051242
  12. Khanra A.K., Godkhindi M.M., Pathak L.C. // Mater Sci Eng A. 2007. V. 454–455. P. 281. https://doi.org/10.1016/j.msea.2006.11.083
  13. Диаграммы состояния двойных и многокомпонентных систем на основе железа. Справочник / Под ред. О.А. Банных, М.Е. Дрица. М.: Металлургия, 1986. 439 с.
  14. Лактионов В.А., Панарин В.Е., Тихонович В.И. и др. // Проблемы трения и изнашивания. 1974. № 5. С. 15.
  15. Орданьян С.С. // Огнеупоры. 1992. № 9/10. С. 10.
  16. Юридицкий Б.Ю., Песин В.А, Орданьян С.С. // Порошковая металлургия. 1982. № 4. С. 32.
  17. Merzhanov A.G., Rogachev A.S., Mukas’yan A.S., et al. // Combust Explos Shock Waves. 1990. V. 26. P. 92. https://doi.org/10.1007/BF00742281
  18. Bogatov Y.V., Shcherbakov V.A. // Int. J. Self-Propag. High-Temp. Synth. 2023. V. 32. P. 239. https://doi.org/10.3103/S1061386223030032
  19. Bogatov Y.V., Shcherbakov V.A. // Russ. J. Non-ferrous Metals. 2021. V. 62. P. 248. https://doi.org/10.3103/S1067821221020036
  20. Bogatov Y.V., Shcherbakov V.A. // Int. J. Self-Propag. High-Temp. Synth. 2020. V. 29. P. 100. https://doi.org/10.3103/S106138622002003X
  21. Lark A., Du J., Chandran K. // J. Mater. Res. 2018. V. 33. P. 4296. https://doi.org/10.1557/jmr.2018.368
  22. Lepakova O.K., Raskolenko L.G., Maksimov Y.M. // Combust Explos Shock Waves. 2020. V. 36. P. 575. https://doi.org/10.1007/BF02699520
  23. Bazhin P., Konstantinov A., Chizhikov A., et al. // Mater. Today Commun. 2020. V. 25. P. 101484. https://doi.org/10.1016/j.mtcomm.2020.101484.
  24. Springer H., Fernandez R., Duarte M., et al. // Acta Mater. 2015. V. 96. P. 47. 10.1016/J.ACTAMAT.2015.06.017' target='_blank'>http://doi: 10.1016/J.ACTAMAT.2015.06.017
  25. Башле Э., Лезу Ж. Качество отливок из жаропрочных сплавов / В кн.: Жаропрочные сплавы для газовых турбин. М.: Металлургия, 1981. С. 342.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Polythermal section of Fe-TiB₂ of the Fe-B-Ti system.

Baixar (95KB)
3. Fig. 2. Dependences of the maximum combustion temperatures of the Ti-B-Fe system on the iron content in the mixtures: 1 – Fe, B, Ti; 2 – FeBn-Ti combined with the solidus-liquidus line of the TiB₂ + Fe phase diagram.

Baixar (74KB)
4. Fig. 3. Dependences of the residual porosity of the final products (h) on the maximum combustion temperature (a) and on the TiB₂ content in the final products (b): 1 – mixture of Ti, B, Fe powders, 2 – mixture of ferroboron alloys with titanium.

Baixar (107KB)
5. Fig. 4. Dependences of the residual porosity of the final products (η) on the preheating temperature of the mixture of ferroboron alloy with titanium (FeB₂ + Ti): 1 – unannealed mixture, 2 – annealed mixture at Тann = 600°C, 2 h.

Baixar (59KB)
6. Fig. 5. Photographs of macrostructures of samples with low (≈5%) (a) and high (≈16%) (b) residual porosity of final products after SHS with preheating at 400 (a) and 900°C (b) of a mixture of ferroboron alloy with titanium (FeB₂ + Ti).

Baixar (531KB)
7. Fig. 6. Microstructure of a sample with low residual porosity (≈5%). Light areas are TiB₂ grains, gray areas are TiB₂ + Fe eutectic

Baixar (426KB)
8. Fig. 7. Distribution of pores (r) by size in the final products of the FeB₂ + Ti mixture: 1 – the initial mixture was annealed at T = 600°C, 2 h, 2 – the initial mixture was not annealed.

Baixar (67KB)
9. Fig. 8. Dependences of the residual porosity of the final product of the Ti-B-Fe system on the dispersion of the initial titanium powder in mixtures: 1 – FeB₆ + 3Ti, 2 – Fe + 6B + 3Ti, 3 – Fe + 4B + 2Ti, 4 – FeB₄ + 2Ti, 5 – Fe + 2B + Ti, 6 – FeB₂ + Ti.

Baixar (81KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025