Prospects for the implementation of artificial intelligence and computer vision technologies in laboratory medicine (literature review)
- Авторлар: Tregub P.P.1,2,3, Zhemchugin D.E.4,5, Zubanov P.S.1, Goldberg A.S.6, Godkov M.A.6,7, Akimkin V.G.1
-
Мекемелер:
- Central Research Institute of Epidemiology
- First Moscow State Medical University named after I.M. Sechenov (Sechenov University
- Scientific Center of Neurology
- Municipal Clinical Hospital named after M.P. Konchalovsky
- Moscow Regional Research Clinical Institute named after M.F. Vladimirsky
- Russian Medical Academy of Continuous Professional Education
- N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow City Health Department
- Шығарылым: Том 69, № 2 (2025)
- Беттер: 117-122
- Бөлім: HEALTH CARE ORGANIZATION
- ##submission.dateSubmitted##: 26.05.2025
- URL: https://modernonco.orscience.ru/0044-197X/article/view/680567
- DOI: https://doi.org/10.47470/0044-197X-2025-69-2-117-122
- EDN: https://elibrary.ru/uaoite
- ID: 680567
Дәйексөз келтіру
Аннотация
Авторлар туралы
Pavel Tregub
Central Research Institute of Epidemiology; First Moscow State Medical University named after I.M. Sechenov (Sechenov University; Scientific Center of Neurology
Email: tregub@cmd.su
Dmitry Zhemchugin
Municipal Clinical Hospital named after M.P. Konchalovsky; Moscow Regional Research Clinical Institute named after M.F. Vladimirsky
Email: Dmitriy_Zh@mail.ru
Pavel Zubanov
Central Research Institute of Epidemiology
Email: zubanov@cmd.su
Arkady Goldberg
Russian Medical Academy of Continuous Professional Education
Email: goldarcadiy@gmail.com
Mikhail Godkov
Russian Medical Academy of Continuous Professional Education; N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow City Health Department
Email: mgodkov@yandex.ru
Vasily Akimkin
Central Research Institute of Epidemiology
Email: vgakimkin@yandex.ru
Әдебиет тізімі
- Plebani M. The CCLM contribution to improvements in quality and patient safety. Clin. Chem. Lab. Med. 2013; 51(1): 39–46. https://doi.org/10.1515/cclm-2012-0094
- Klatt E.C. Cognitive factors impacting patient understanding of laboratory test information. J. Pathol. Inform. 2023; 15: 100349. https://doi.org/10.1016/j.jpi.2023.100349
- Plebani M., Astion M.L., Barth J.H., Chen W., de Oliveira Galoro C.A., Escuer M.I., et al. Harmonization of quality indicators in laboratory medicine. A preliminary consensus. Clin. Chem. Lab. Med. 2014; 52(7): 951–8. https://doi.org/10.1515/cclm-2014-0142
- Undru T.R., Uday U., Lakshmi J.T., Kaliappan A., Mallamgunta S., Nikhat S.S., et al. Integrating artificial intelligence for clinical and laboratory diagnosis – a review. Maedica (Bucur). 2022; 17(2): 420–6. https://doi.org/10.26574/maedica.2022.17.2.420
- Ronzio L., Cabitza F., Barbaro A., Banfi G. Has the flood entered the basement? A systematic literature review about machine learning in laboratory medicine. Diagnostics (Basel). 2021; 11(2): 372. https://doi.org/10.3390/diagnostics11020372
- Tsai E.R., Tintu A.N., Boucherie R.J., de Rijke Y.B., Schotman H.H.M., Demirtas D. Characterization of laboratory flow and performance for process improvements via application of process mining. Appl. Clin. Inform. 2023; 14(1): 144–52. https://doi.org/10.1055/a-1996-8479
- Lindroth H., Nalaie K., Raghu R., Ayala I.N., Busch C., Bhattacharyya A., et al. Applied artificial intelligence in healthcare: a review of computer vision technology application in hospital settings. J. Imaging. 2024; 10(4): 81. https://doi.org/10.3390/jimaging10040081
- Gao J., Yang Y., Lin P., Park D.S. Computer vision in healthcare applications. J. Healthc. Eng. 2018; 2018: 5157020. https://doi.org/10.1155/2018/5157020
- Haymond S., McCudden C. Rise of the machines: artificial intelligence and the clinical laboratory. J. Appl. Lab. Med. 2021; 6(6): 1640–54. https://doi.org/10.1093/jalm/jfab075
- Korchagin S., Zaychenkova E., Ershov E., Pishchev P., Vengerov Y. Image-based second opinion for blood typing. Health Inf. Sci. Syst. 2024; 12(1): 28. https://doi.org/10.1007/s13755-024-00289-4
- Cadamuro J., Hillarp A., Unger A., von Meyer A., Bauçà J.M., Plekhanova O., et al. Presentation and formatting of laboratory results: a narrative review on behalf of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group "postanalytical phase" (WG-POST). Crit. Rev. Clin. Lab. Sci. 2021; 58(5): 329–53. https://doi.org/10.1080/10408363.2020.1867051
- Patel A.U., Shaker N., Mohanty S., Sharma S., Gangal S., Eloy C., et al. Cultivating clinical clarity through computer vision: a current perspective on whole slide imaging and artificial intelligence. Diagnostics (Basel). 2022; 12(8): 1778. https://doi.org/10.3390/diagnostics12081778
- Cadamuro J. Rise of the machines: the inevitable evolution of medicine and medical laboratories intertwining with artificial intelligence – a narrative review. Diagnostics (Basel). 2021; 11(8): 1399. https://doi.org/10.3390/diagnostics11081399
- Association for the Advancement of Artificial Intelligence. Available at: https://aaai.org/
- Zhou S., Chen B., Fu E.S., Yan H. Computer vision meets microfluidics: a label-free method for high-throughput cell analysis. Microsyst. Nanoeng. 2023; 9: 116. https://doi.org/10.1038/s41378-023-00562-8
- Syed T.A., Siddiqui M.S., Abdullah H.B., Jan S., Namoun A., Alzahrani A., et al. In-depth review of augmented reality: tracking technologies, development tools, AR displays, collaborative AR, and security concerns. Sensors (Basel). 2022; 23(1): 146. https://doi.org/10.3390/s23010146
- Rupp N., Peschke K., Köppl M., Drissner D., Zuchner T. Establishment of low-cost laboratory automation processes using AutoIt and 4-axis robots. SLAS Technol. 2022; 27(5): 312–8. https://doi.org/10.1016/j.slast.2022.07.001
- Manickam P., Mariappan S.A., Murugesan S.M., Hansda S., Kaushik A., Shinde R., et al. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors (Basel). 2022; 12(8): 562. https://doi.org/10.3390/bios12080562
- Topol E.J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 2019; 25(1): 44–56. https://doi.org/10.1038/s41591-018-0300-7
- Iqbal J., Cortés Jaimes D.C., Makineni P., Subramani S., Hemaida S., Thugu T.R., et al. Reimagining healthcare: unleashing the power of artificial intelligence in medicine. Cureus. 2023; 15(9): e44658. https://doi.org/10.7759/cureus.44658
- Wen X., Leng P., Wang J., Yang G., Zu R., Jia X., et al. Clinlabomics: leveraging clinical laboratory data by data mining strategies. BMC Bioinformatics. 2022; 23(1): 387. https://doi.org/10.1186/s12859-022-04926-1
- Stafford I.S., Kellermann M., Mossotto E., Beattie R.M., MacArthur B.D., Ennis S. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ Digit. Med. 2020; 3: 30. https://doi.org/10.1038/s41746-020-0229-3
- Wald N.J., Cuckle H.S., Densem J.W., Nanchahal K., Royston P., Chard T., et al. Maternal serum screening for Down’s syndrome in early pregnancy. BMJ. 1988; 297(6653): 883–7. https://doi.org/10.1136/bmj.297.6653.883
- Hadlow N.C., Rothacker K.M., Wardrop R., Brown S.J., Lim E.M., Walsh J.P. The relationship between TSH and free T4 in a large population is complex and nonlinear and differs by age and sex. J. Clin. Endocrinol. Metab. 2013; 98(7): 2936–43. https://doi.org/10.1210/jc.2012-4223
- Asar T.O., Ragab M. Leukemia detection and classification using computer-aided diagnosis system with falcon optimization algorithm and deep learning. Sci. Rep. 2024; 14(1): 21755. https://doi.org/10.1038/s41598-024-72900-3
- Bunch D.R., Durant T.J., Rudolf J.W. Artificial intelligence applications in clinical chemistry. Clin. Lab. Med. 2023; 43(1): 47–69. https://doi.org/10.1016/j.cll.2022.09.005
- van Eekelen L., Litjens G., Hebeda K.M. Artificial intelligence in bone marrow histological diagnostics: potential applications and challenges. Pathobiology. 2024; 91(1): 8–17. https://doi.org/10.1159/000529701
- Kimura K., Ai T., Horiuchi Y., Matsuzaki A., Nishibe K., Marutani S., et al. Automated diagnostic support system with deep learning algorithms for distinction of Philadelphia chromosome-negative myeloproliferative neoplasms using peripheral blood specimen. Sci. Rep. 2021; 11(1): 3367. https://doi.org/10.1038/s41598-021-82826-9
- Walter C., Weissert C., Gizewski E., Burckhardt I., Mannsperger H., Hänselmann S., et al. Performance evaluation of machine-assisted interpretation of Gram stains from positive blood cultures. J. Clin. Microbiol. 2024; 62(4): e0087623. https://doi.org/10.1128/jcm.00876-23
- Smith K.P., Kirby J.E. Image analysis and artificial intelligence in infectious disease diagnostics. Clin. Microbiol. Infect. 2020; 26(10): 1318–23. https://doi.org/10.1016/j.cmi.2020.03.012
- Mathison B.A., Kohan J.L., Walker J.F., Smith R.B., Ardon O., Couturier M.R. Detection of intestinal protozoa in trichrome-stained stool specimens by use of a deep convolutional neural network. J. Clin. Microbiol. 2020; 58(6): e02053-19. https://doi.org/10.1128/JCM.02053-19
- Chowdhury N.I., Smith T.L., Chandra R.K., Turner J.H. Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks. Int. Forum Allergy Rhinol. 2019; 9(1): 46–52. https://doi.org/10.1002/alr.22196
- Grigorev G.V., Lebedev A.V., Wang X., Qian X., Maksimov G.V., Lin L. Advances in microfluidics for single red blood cell analysis. Biosensors (Basel). 2023; 13(1): 117. https://doi.org/10.3390/bios13010117
- Seyedi S.S., Parvin P., Jafargholi A., Hashemi N., Tabatabaee S.M., Abbasian A., et al. Spectroscopic properties of various blood antigens/antibodies. Biomed. Opt. Express. 2020; 11(4): 2298–312. https://doi.org/10.1364/BOE.387112
- Sheng N., Liu L., Liu H. Quantitative determination of agglutination based on the automatic hematology analyzer and the clinical significance of the erythrocyte-specific antibody. Clin. Chim. Acta. 2020; 510: 21–5. https://doi.org/10.1016/j.cca.2020.06.042
- Li H.Y., Guo K. Blood group testing. Front. Med. (Lausanne). 2022; 9: 827619. https://doi.org/10.3389/fmed.2022.827619
- Aysola A., Wheeler L., Brown R., Denham R., Colavecchia C., Pavenski K., et al. Multi-center evaluation of the automated immunohematology instrument, the ORTHO VISION analyzer. Lab. Med. 2017; 48(1): 29–38. https://doi.org/10.1093/labmed/lmw061
- Bhagwat S.N., Sharma J.H., Jose J., Modi C.J. Comparison between conventional and automated techniques for blood grouping and crossmatching: experience from a tertiary care centre. J. Lab. Physicians. 2015; 7(2): 96–102. https://doi.org/10.4103/0974-2727.163130
- Moulds M.K. Review: monoclonal reagents and detection of unusual or rare phenotypes or antibodies. Immunohematology. 2006; 22(2): 52–63.
- Voak D. Monoclonal blood group antibodies. Beitr. Infusionsther. 1989; 24: 200–13.
- Ratajczak K., Sklodowska-Jaros K., Kalwarczyk E., Michalski J.A., Jakiela S., Stobiecka M. Effective optical image assessment of cellulose paper immunostrips for blood typing. Int. J. Mol. Sci. 2022; 23(15): 8694. https://doi.org/10.3390/ijms23158694
- Ding S., Duan S., Chen Y., Xie J., Tian J., Li Y., et al. Centrifugal microfluidic platform with digital image analysis for parallel red cell antigen typing. Talanta. 2023; 252: 123856. https://doi.org/10.1016/j.talanta.2022.123856
- Hyvärinen K., Haimila K., Moslemi C., Biobank B.S., Olsson M.L., Ostrowski S.R., et al. A machine-learning method for biobank-scale genetic prediction of blood group antigens. PLoS Comput. Biol. 2024; 20(3): e1011977. https://doi.org/10.1371/journal.pcbi.1011977
- Korchagin S.A., Zaychenkova E.E., Sharapov D.A., Ershov E.I., Butorin U.V., Vengerov U.U. An algorithm of blood typing using serological plate images. Comput. Opt. 2023; 47(6): 958–67. https://doi.org/10.18287/2412-6179-CO-1339
- Pfeil J., Nechyporenko A., Frohme M., Hufert F.T., Schulze K. Examination of blood samples using deep learning and mobile microscopy. BMC Bioinformatics. 2022; 23(1): 65. https://doi.org/10.1186/s12859-022-04602-4
- Blatter T.U., Witte H., Nakas C.T., Leichtle A.B. Big data in laboratory medicine – FAIR quality for AI? Diagnostics (Basel). 2022; 12(8): 1923. https://doi.org/10.3390/diagnostics12081923
- Kulikowski C.A. Historical roots of international biomedical and health informatics: the road to IFIP-TC4 and IMIA through cybernetic medicine and the Elsinore meetings. Yearb. Med. Inform. 2017; 26(1): 257–62. https://doi.org/10.15265/IY-2017-001
- Kozak J., Fel S. How sociodemographic factors relate to trust in artificial intelligence among students in Poland and the United Kingdom. Sci. Rep. 2024; 14(1): 28776. https://doi.org/10.1038/s41598-024-80305-5
- Paranjape K., Schinkel M., Hammer R.D., Schouten B., Nannan Panday R.S., Elbers P.W.G., et al. The value of artificial intelligence in laboratory medicine. Am. J. Clin. Pathol. 2021; 155(6): 823–31. https://doi.org/10.1093/ajcp/aqaa170
- Herman D.S., Rhoads D.D., Schulz W.L., Durant T.J.S. Artificial intelligence and mapping a new direction in laboratory medicine: a review. Clin. Chem. 2021; 67(11): 1466–82. https://doi.org/10.1093/clinchem/hvab165
Қосымша файлдар
