Удельное сопротивление циркония в окрестности плавления: эксперимент и первопринципный расчет

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Представлены данные об удельном электрическом сопротивлении циркония в твердом и жидком состояниях в окрестности плавления, полученные в экспериментах по импульсному нагреву проволочек, а также в расчетах методом квантовой молекулярной динамики с использованием формулы Кубо–Гринвуда. Проанализировано влияние примеси гафния на результаты расчетов и измерений.

全文:

受限制的访问

作者简介

А. Дороватовский

Объединенный институт высоких температур РАН

Email: minakovd@jiht.ru
俄罗斯联邦, Москва

М. Шейндлин

Объединенный институт высоких температур РАН

Email: minakovd@jiht.ru
俄罗斯联邦, Москва

В. Фокин

Объединенный институт высоких температур РАН

Email: minakovd@jiht.ru
俄罗斯联邦, Москва

Д. Минаков

Объединенный институт высоких температур РАН

编辑信件的主要联系方式.
Email: minakovd@jiht.ru
俄罗斯联邦, Москва

参考

  1. CRC Handbook of Chemistry and Physics. 89th ed. / Ed. Lide D.R. Boca Raton: CRC Press, 2008–2009. 2736 p.
  2. Минцев В.Б. Динамические методы в физике неидеальной плазмы. Начало // ТВТ. 2021. Т. 59. № 6. С. 885.
  3. Ломоносов И.В., Фортова С.В. Широкодиапазонные полуэмпирические уравнения состояния вещества для численного моделирования высокоэнергетических процессов // ТВТ. 2017. Т. 55. № 4. С. 596.
  4. Ткаченко С.И., Хищенко К.В., Воробьев В.С., Левашов П.Р., Ломоносов И.В., Фортов В.Е. Метастабильные состояния жидкого металла при электрическом взрыве // ТВТ. 2001. Т. 39. № 5. С. 728.
  5. Minakov D.V., Paramonov M.A., Levashov P.R. Consistent Interpretation of Experimental Data for Expanded Liquid Tungsten near the Liquid–Gas Coexistence Curve // Phys. Rev. B. 2018. V. 97. № 2. P. 024205.
  6. Minakov D.V., Paramonov M.A., Levashov P.R. Thermophysical Properties of Liquid Molybdenum in the Near-critical Region Using Quantum Molecular Dynamics // Phys. Rev. B. 2021. V. 103. № 18. P. 184204.
  7. Minakov D.V., Paramonov M.A., Levashov P.R. Interpretation of Pulse-heating Experiments for Rhenium by Quantum Molecular Dynamics // High Temp. – High Press. 2020. V. 49. № 1–2. P. 211.
  8. Minakov D.V., Paramonov M.A., Levashov P.R. Ab Initio Inspection of Thermophysical Experiments for Molybdenum near Melting // AIP Adv. 2018. V. 8. № 12. P. 125012.
  9. Paramonov M.A., Minakov D.V., Fokin V.B., Knyazev D.V., Demyanov G.S., Levashov P.R. Ab Initio Inspection of Thermophysical Experiments for Zirconium near Melting // J. Appl. Phys. 2022. V. 132. № 6. P. 065102.
  10. Knyazev D.V., Levashov P.R. Ab Initio Calculation of Transport and Optical Poperties of Aluminum: Influence of Simulation Parameters // Comput. Mater. Sci. 2013. V. 79. P. 817.
  11. Савватимский А.И., Коробенко В.Н. Высокотемпературные свойства металлов атомной энергетики (цирконий, гафний и железо при плавлении и в жидком состоянии). М.: Изд-во МЭИ, 2012. 216 с.
  12. Коробенко В.Н., Савватимский А.И. Свойства твердого и жидкого циркония // ТВТ. 1991. Т. 29. № 5. С. 883.
  13. Коробенко В.Н., Савватимский А.И. Измерение температуры циркония от температуры плавления до 4100 K с применением моделей черного тела в жидком состоянии // ТВТ. 2001. Т. 39. № 3. С. 518.
  14. Костановский А.В., Костановская М.Е. Определение теплоемкости в экспериментах импульсного электрического нагрева // ТВТ. 2021. Т. 59. № 5. С. 790.
  15. Коробенко В.Н., Савватимский А.И. Удельная теплоемкость жидкого циркония до 4100 К // ТВТ. 2001. Т. 39. № 5. С. 712.
  16. Савватимский А.И. Теплоемкость и электросопротивление металлов Ta и W от точки плавления до 7000 К при импульсном нагреве током // ТВТ. 2021. Т. 59. № 5. С. 686.
  17. Korobenko V.N., Savvatimski A.I., Sevostyanov K.K. Experimental Investigation of Solid and Liquid Zirconium // High Temp. – High Press. 2001. V. 33. № 6. P. 647.
  18. Савватимский А.И., Онуфриев С.В., Вальяно Г.Е., Киреева А.Н., Патрикеев Ю.Б. Электрическое сопротивление жидкого гадолиния (с содержанием углерода 29 ат. %) для температур 2000–4250 К // ТВТ. 2020. Т. 58. № 1. С. 148.
  19. Коробенко В.Н., Савватимский А.И. Температурная зависимость плотности и удельного электросопротивления жидкого циркония до 4100 K // ТВТ. 2001. Т. 39. № 4. С. 566.
  20. Korobenko V.N., Agranat M.B., Ashitkov S.I., Savvatimski A.I. Zirconium and Iron Densities in a Wide Range of Liquid States // Int. J. Thermophys. 2002. V. 23. P. 307.
  21. Коробенко В.Н., Савватимский А.И. Свойства жидкого циркония до 4100 К // ЖФХ. 2003. Т. 77. № 10. С. 1742.
  22. Беликов Р.С. Экспериментальное исследование теплофизических свойств системы Mo–C эвтектического состава и графита при высоких температурах. Дис. … канд. физ.-мат. наук. М.: ОИВТ РАН, 2018.
  23. Knyazev D.V., Levashov P.R. Thermodynamic, Transport, and Optical Properties of Dense Silver Plasma Calculated Using the Greekup Code // Contrib. Plasma Phys. 2019. V. 59. № 3. P. 345.
  24. Demyanov G.S., Knyazev D.V., Levashov P.R. Continuous Kubo–Greenwood Formula: Theory and Numerical Implementation // Phys. Rev. E. 2022. V. 105. № 3. P. 035307.
  25. Kresse G., Hafner J. Ab Initio Molecular Dynamics for Liquid Metals // Phys. Rev. B. 1993. V. 47. № 1. P. 558.
  26. Blöchl P.E. Projector Augmented-wave Method // Phys. Rev. B. 1994. V. 50. № 24. P. 17953.
  27. Fokin V., Minakov D., Levashov P. Ab Initio Calculations of Transport and Optical Properties of Dense Zr Plasma Near Melting // Symmetry. 2022. V. 15. № 1. P. 48.
  28. Desai P.D., James H.M., Ho C.Y. Electrical Resistivity of Vanadium and Zirconium // J. Phys. Chem. Ref. Data. 1984. V. 13. № 4. P. 1097.
  29. Milošević N.D., Maglić K.D. Thermophysical Properties of Solid Phase Zirconium at High Temperatures // Int. J. Thermophys. 2006. V. 27. P. 1140.
  30. Пелецкий В.Э., Бельская Э.А. Электрическое сопротивление тугоплавких металлов. Справ. М.: Энергоиздат, 1981.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup for pulsed heating: 1 - sample in a high-pressure chamber; 2 - ceramic insulator; 3 - sapphire window; 4 - electrical input (bronze); 5 - controlled spark gap; 6 - current transformer; 7 - shadow shooting chamber; 8 - pyrometer; 9 - 660 nm illumination laser; 10 - dichroic mirror; 11 - replaceable protective glasses; 12 - gas supply, helium 1-7000 bar.

下载 (140KB)
3. Fig. 2. Specific resistance of zirconium depending on molar enthalpy (this work): 1 – iodide zirconium; 2 – zirconium of the Alfa Aesar brand (1.5% Hf); 3 – results of calculation of KMD + KG; 4 – results of calculation of KMD + KG, related to the initial volume; dashed line – linear approximation of calculation points for β-Zr and liquid; 5 – [19], 6 – [12].

下载 (83KB)
4. Fig. 3. Specific resistance of zirconium depending on temperature (this work): 1 – iodide zirconium; 2 – Alfa Aesar brand zirconium (1.5% Hf); 3 – iodide zirconium with volume correction from first-principles calculations; 4 – KMD + KG calculations; 5 – [19], 6 – [17], 7 – [29], 8 – [30], 9 – [28].

下载 (74KB)

版权所有 © Russian Academy of Sciences, 2024