Термодинамическая оптимизация гибридной схемы энергетической установки с твердооксидным топливным элементом с внутренней конверсией метана и c газовой турбиной

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

С помощью термодинамического моделирования проведена оптимизация гибридной схемы энергетической установки с твердооксидным топливным элементом с внутренней конверсией метана и c газовой турбиной. В предположении полного преобразования для однонаправленных реакций показана возможность работы топливного элемента без генерирования тепла для утилизации. В результате оптимизации гибридной энергетической установки получена оригинальная схема с топливным элементом с внутренними процессами регенерации тепла и конверсии метана, без газовой турбины, с КПД выше 90%.

About the authors

А. З. Жук

Объединенный институт высоких температур РАН

Email: peterivanov1248@gmail.com
Russian Federation, Москва

П. П. Иванов

Объединенный институт высоких температур РАН

Author for correspondence.
Email: peterivanov1248@gmail.com
Russian Federation, Москва

References

  1. Филимонова А.А., Чичиров А.А., Чичирова Н.Д., Печенкин А.В. Обзор проектных схем гибридных систем с твердооксидным топливным элементом и газовой турбиной для комбинированного производства тепла и электроэнергии // Журнал СФУ. Техника и технологии. 2022. Т. 15. № 7. С. 812.
  2. Bao C., Wang Y., Feng D., Jiang Z., Zhang X. Macroscopic Modeling of Solid Oxide Fuel Cell (SOFC) and Model-based Control of SOFC and Gas Turbine Hybrid System // Prog. Energy Combust. Sci. 2018. V. 66. P. 83.
  3. Buonomano A., Calise F., Dentice d’Accadia M., Palombo A., Vicidomini M. Hybrid Solid Oxide Fuel Cells–Gas Turbine Systems for Combined Heat and Power: A Review // Appl. Energy. 2015. V. 156. P. 32.
  4. Wilson J.A., Wang Y., Carroll J., Raush J., Arkenberg G., Dogdibegovic E., Swartz S., Daggett D., Singhal S., Zhou X.D. Hybrid Solid Oxide Fuel Cell/Gas Turbine Model Development for Electric Aviation // Energies. 2022. V. 15. P. 2885.
  5. Serbin S., Washchilenko N., Cherednichenko O., Burunsuz K., Dzida M., Chen D. Application Analysis of a Hybrid Solid Oxide Fuel Cell–Gas Turbine System for Marine Power Plants // Ships and Offshore Structures. 2022. V. 17. № 4. P. 866.
  6. Pianko-Oprych P., Palus M. Simulation of SOFCs Based Power Generation System Using Aspen // Polish J. Chem. Technol. 2017. V. 19. № 4. P. 8.
  7. Yiyang W.U., Yixiang S.H.I., Ningsheng C.A.I., Meng N.I. Thermal Modeling and Management of Solid Oxide Fuel Cells Operating with Internally Reformed Methane // J. Thermal Sci. 2018. V. 27. № 3. P. 203.
  8. Жук А.З., Иванов П.П. Характеристики твердооксидного топливного элемента для термодинамического моделирования энергетических установок // ТВТ. 2023. Т. 61. № 5. С. 777.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences