Simple model for calculation of radiation parameters of a unidirectional flat openingv

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model for calculating the radiation parameters of a flat aperture in the far zone of free space is described. The electromagnetic field on the aperture is specified by the field of the primary polarized wave emanating from the excitation point. The radiating system is represented by Huygens elements. Verification of the reliability of the calculation result is carried out at the level of agreement with fundamental physical principles, with analytical calculations, and with the experimental results. When the antenna is excited by an arbitrary electric pulse, the calculation time of the radiation parameters in the time, space, and frequency domains is a few minutes. The calculation model is equipped with an interface in the style of MS Windows.

Full Text

Restricted Access

About the authors

V. E. Ostashev

Joint Institute for High Temperatures of Russian Academy of Sciences

Author for correspondence.
Email: ostashev@ihed.ras.ru
Russian Federation, Izhorskaya str., 13, Bild. 2, Moscow, 125412

References

  1. Марков Г. Т., Сазонов Д. М. Антенны. М.: Энергия, 1975.
  2. Skulkin S. P., Turchin V. I. // IEEE Trans. 1999. V. AP-47. № 5. P. 929.
  3. Skulkin S. P., Lysenko N. A., Uskov G. K., Kascheev N. I. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 5. P. 1036. http: doi.org/10.1109/LAWP.2019.2908455
  4. Skulkin S. P., Lysenko N. A., Uskov G. K., Bobreshov A. M. // IEEE Antennas and Wireless Propagation Lett. 2020. V. 19. № 9. P. 1516. http: doi.org/10.1109/LAWP.2020.3008116
  5. Kурушин А. А., Пластиков А. Н. Проектирование СВЧ устройств в среде CST Microwave Studio. М.: МЭИ, 2011.
  6. Банков С. Е., Курушин А. А. Расчет излучаемых структур с помощью FEKO. М.: НПП «Родник», 2008.
  7. Вайнштейн Л. А. Электромагнитные волны. 2-е изд. М.: Радио и связь, 1988.
  8. Осташев В. Е., Ульянов А. В., Федоров В. М. // РЭ. 2020. Т. 65. № 3. С. 234.
  9. Осташев В. Е., Ульянов А. В. // РЭ. 2021. Т. 66. № 11. С. 1.
  10. Lee R. T., Smith G. S. // IEEE Antennas and Propagation Magazin. 2004. V. 46. № 1. P. 86.
  11. Осташев В. Е., Ульянов А. В. // РЭ. 2023. Т. 68. № 12. С. 1149.
  12. Авдеев В. Б. // Радиотехника. 1999. № 6. С. 96.
  13. Fedorov V. M., Efano M. V., Ostashev V. Ye. et al. // Electronics. 2021. V.10. № 9. Article No. 1009101. https://doi.org/10.3390/electronics10091011
  14. Введенский Б. А., Аренберг А. Г. Распространение ультракоротких радиоволн. М.: Сов. радио, 1938.
  15. MIL-STD-464C «Electromagnetic Environmental Effects Requirements for Systems». Wright-Patterson: AFB, 2010. 165 p. http://everyspec.com/MIL-STD/MIL-STD-0300–0499/MIL-STD-464C_28312.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Block diagram of the conversion of electrical impulse energy into radiation: G – generator, F – feeder, A – antenna.

Download (55KB)
3. Fig. 2. Geometry of the radiation formation region.

Download (87KB)
4. Fig. 3. Schematic diagram of the aperture antenna layout.

Download (97KB)
5. Fig. 4. Antenna excitation pulse (1) and pulse energy (2).

Download (64KB)
6. Fig. 5. The electric field strength of the radiation pulse in the H-plane of the aperture at angles of deviation from the antenna pattern axis of 0 (a), 10 (b), 20 (c) and 30 degrees (d): solid line – calculation, dashed line – experiment.

Download (139KB)
7. Fig. 6. Normalized DD of the antenna model: 1 – MDD; 2 – EDD (solid line – calculation, markers – experiment).

Download (59KB)
8. Fig. 7. Excitation pulse (a), RP of a circular synchronous aperture (b, curve 1), fraction of radiation energy η(φ) inside a cone with an opening angle of ±φ (b, curve 2).

Download (73KB)
9. Fig. 8. Antenna radiation pattern (1) and the fraction of radiation energy η(φ) inside a cone with an aperture angle of ±φ (2).

Download (70KB)
10. Fig. 9. Normalized dependence of energy Qeff on aperture size for Rvoz = 0.5 (1), 0.75 (2) and 1 m (3): solid line – square aperture, dotted line – round.

Download (67KB)
11. Fig. 10. Antenna excitation pulse in the form of a monocycle (a) and Gaussian (b).

Download (81KB)
12. Fig. 11. Normalized dependence of energy Qeff for a circular aperture excited from a distance Rex = 0.75 m by a radio pulse (1), a monocycle pulse (2) and a Gaussian pulse (3).

Download (70KB)
13. Fig. 12. Parameters of the radiation directionality of a synchronous (a) and optimal aperture (b) of the same diameter: 1 and 2 – normalized diagrams of the MDN and EDN; 3 – fraction of the radiation energy inside a solid angle with an aperture of ±φ.

Download (129KB)
14. Fig. 13. The fraction of the excitation energy of the IS emitted into space: 1 – excitation of the aperture by a radio pulse, 2 – by a monocycle pulse, 3 – by a Gaussian pulse; solid lines – synchronous excitation; markers – excitation of the aperture by pulses of types 2 and 3, asynchronous and non-uniform (from point A within the aperture observation angle of 30°).

Download (79KB)

Copyright (c) 2024 Russian Academy of Sciences