Extraction of ytterbium from nitric acid with hexane solutions of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The extraction of ytterbium with solutions of mono(2-ethylhexyl) ether of 2-ethylhexylphosphonic acid (HEH[EHP]) in hexane from nitric acid solutions at an HEH[EHP] concentration of 0.5–2.0 mol/L, acidity of 0.1–2.0 mol/L, and lanthanide concentration from 0.1 to 5 g/L was studied. It is shown that the dependences of the ytterbium distribution coefficients on the acidity of the solution are described by expressions such as logD = alog[H+] + b, with the value of the coefficient a depending on the extractant and lanthanide concentrations and varying in the range from –1.26 to –3.0. The probable cause is extraction by both cation-exchange and solvation mechanisms. A model describing the dependence of the ytterbium distribution coefficient on its concentration in the aqueous phase at various extractant concentrations and acidities is proposed. The model reasonably agrees with the experimental data.

Full Text

Restricted Access

About the authors

K. S. Bobrovskaya

Kapitsa Research Institute of Technology, Ulyanovsk State University

Author for correspondence.
Email: rostislavkuznetsov@yandex.ru
Russian Federation, Ulyanovsk

R. A. Kuznetsov

Kapitsa Research Institute of Technology, Ulyanovsk State University

Email: rostislavkuznetsov@yandex.ru
Russian Federation, Ulyanovsk

References

  1. Dash A., Chakravarty R., Knapp Furn F., Pillai A.M.R. // Curr. Radiopharm. 2015. Vol. 8. N. 2. P. 107. https://doi.org/10.2174/1874471008666150312161942
  2. Tarasov V., Andreev O., Romanov E., Kuznetsov R., Kupriyanov V., Tselishchev I. // Curr. Radiopharm. 2015. Vol. 8. N 2. P. 95. https://doi.org/10.2174/1874471008666150312160855
  3. Qi D. Hydrometallurgy of Rare Earths: Extraction and Separation. Elsevier Science, 2018. 804 p. https://doi.org/10.1016/b978-0-12-813920-2.00002-7
  4. Dash A., Pillai M.R.A., Knapp F.F. // Nucl. Med. Mol. Imaging. 2015. Vol. 49. N 2. P. 85. https://doi.org/10.1007/s13139-014-0315-z
  5. Kuznetsov R.A., Bobrovskaya K.S., Svetukhin V.V., Fomin A.N., Zhukov A.V. // Radiochemistry. 2019. Vol. 61. N 4. P. 381–395. https://doi.org/10.1134/S1066362219040015
  6. Horwitz E.P., McAlister D.R., Bond A.H., Barrans R.E., Williamson J.M. // Appl. Radiat. Isot. 2005. Vol. 63. P. 23. https://doi.org/10.1016/j.apradiso.2005.02.005
  7. Амбул Е.В., Голецкий Н.Д., Медведева А.И., Наумов А.А., Пузиков Е.А., Афонин М.А., Шишкин Д.Н. // Радиохимия. 2022. Т. 64. № 3. С. 233. https://doi.org/10.31857/S0033831122030054
  8. Амбул Е.В., Голецкий Н.Д., Наумов А.А., Пузиков Е.А., Мамчич М.В., Бизин А.В., Медведева А.И. // Радиохимия. 2023. T. 65. № 3. С. 226. doi: 10.31857/S0033831123030036
  9. Zhengshui Hu, Ying Pan, Xun Fu, Ying Pan // Solvent Extr. Ion Exch. 1995. Vol. 13. N 5. P. 965. https://doi.org/10.1080/07366299508918312
  10. Zhu Z., Bian Z., Long Z. // Anal. Meth. 2010. Vol. 2. P. 82. https://doi.org/10.1039/b9ay00187e
  11. Quinn J.E., Soldenhoff K.H., Stevens G.W., Lengkeek N.A. // Hydrometallurgy. 2015. Vol. 157. P. 298. http://doi.org/10.1016/j.hydromet.2015.09.005
  12. Lumetta G.J., Sinkov S.I., Krause J.A., Sweet L.E. // Inorg. Chem. 2016. Vol. 55. N 4. P. 1633. https://doi.org/10.1021/acs.inorgchem.5b02524
  13. Grimes T.S., Tian G., Rao L., Nash K.L. // Inorg. Chem. 2012. Vol. 51. P. 6299. https://doi.org/10.1021/Ic300503P
  14. Shu Q., Khayambashi A., Wang X., Wei Y. // Adsorp. Sci. Technol. 2018. Vol. 36. P. 1049. https://doi.org/10.1177/0263617417748112
  15. Su W., Chen Ji, Jing Yu, Liu Ch., Deng Yu, Yang M. // J. Rare Earths. 2018. Vol. 36. N 5. P. 505. https://doi.org/10.1016/j.jre.2017.10.008
  16. Lécrivain T., Kimberlin A., Dodd D.E., Miller S., Hobbs I., Campbell E., et al. // Solvent Extr. Ion Exch. 2019. Vol. 37. N 3. P. 284–296. https://doi.org/10.1080/07366299.2019.1639371
  17. Kolarik Z. // Solvent Extr. Ion Exch. 2010. Vol. 28. N 6. P. 707. https://doi.org/10.1080/07366299.2010.515172
  18. Tasaki Y., Abe Y., Ooi K., Narita H., Tanaka M., Wakisaka A. // Sep. Purif. Technol. 2016. Vol. 157. P. 162. https://doi.org/10.1016/j.seppur.2015.11.038
  19. Ooi K., Tasaki-Handa Y., Abe Y., Wakisaka A. // Dalton Trans. 2014. Vol. 43. P. 4807. https://doi.org/10.1039/c3dt53407c

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the ytterbium distribution coefficients on the concentration of the HNO3 solution at different concentrations of HEH[EHP] (mol/l: ♦ – 0.5, ■ – 1, ▲ – 1.5, ● – 2) and metal (g/l: a – 0.1 g/l, b – 1, c – 5).

Download (211KB)
3. Fig. 2. Change in raffinate acidity as a function of ytterbium concentration in the organic phase during extraction with a 1.5 mol/L HEH[EHP] solution from a 0.1 mol/L nitric acid solution.

Download (65KB)
4. Fig. 3. IR Fourier spectra of the extractant HEH[EHP] before (1) and after (2) saturation with ytterbium and the resulting precipitate of the extractant salt with Yb (3).

Download (193KB)
5. Fig. 4. Dependence of the ytterbium distribution coefficients on the concentration of the HEH[EHP] solution in hexane at different concentrations of nitric acid (mol/l: ♦ – 0.5, ■ – 1, ▲ – 1.5, ● – 2) and metal (g/l: a – 0.1, b – 1, c – 5).

Download (200KB)
6. Fig. 5. Dependence of the ytterbium extraction constant on the metal concentration.

Download (62KB)
7. Fig. 6. Dependence of ytterbium distribution coefficients on its concentration in the aqueous phase during extraction with HEH[EHP] solutions of different concentrations in hexane (mol/l: a – 0.5, b – 1, c – 1.5, d – 2) at different concentrations of nitric acid (mol/l: ♦ – 0.5, ■ – 1, ▲ – 1.5, ● – 2). Points – experiment, lines – calculation.

Download (267KB)

Copyright (c) 2024 Russian Academy of Sciences