Temperature sensitivity of peatland soils respiration across different terrestrial ecosystems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In laboratory we applied Sequential (S) and Equal-time (ET) methods to assess the temperature sensitivity of peatland soils respiration across different terrestrial ecosystems: southern tundra, northern taiga, and coniferous-broadleaf forests. Q10 values varied widely (1.3–4.8) and in case of ET method decreased from northern to temperate latitudes. In the “cold” range (5–15°С), Q10 increased from the southern tundra (3.5) to the northern taiga (4.8) and then sharply decreased for the coniferous-broadleaf forests (2.5). Meanwhile, “warm” range (15–25°С) showed a clear decline of Q10 from northern to temperate latitudes: southern tundra (2.6) > northern taiga (1.6) > coniferous-broadleaf forest (1.3). Application of S method resulted in low variability of Q10 values. Our results demonstrate higher temperature sensitivity of peatland soils respiration in northern latitudes comparably to temperate ones. Q10 values obtained can be useful for calibration of regional carbon cycle datasets that consider the contribution of peatland soils.

About the authors

M. O. Tarkhov

Lomonosov Moscow State University

Author for correspondence.
Email: tarkhov.mo@gmail.com

Факультет почвоведения

Russian Federation, Moscow, 119991

G. V. Matyshak

Lomonosov Moscow State University

Email: tarkhov.mo@gmail.com

Факультет почвоведения

Russian Federation, Moscow, 119991

I. M. Ryzhova

Lomonosov Moscow State University

Email: tarkhov.mo@gmail.com

Факультет почвоведения

Russian Federation, Moscow, 119991

O. Yu. Goncharova

Lomonosov Moscow State University

Email: tarkhov.mo@gmail.com

Факультет почвоведения

Russian Federation, Moscow, 119991

S. V. Chuvanov

Lomonosov Moscow State University; Dokuchaev Soil Science Institute

Email: tarkhov.mo@gmail.com
Russian Federation, Moscow, 119991; Moscow, 119017

M. V. Timofeeva

Lomonosov Moscow State University; Dokuchaev Soil Science Institute

Email: tarkhov.mo@gmail.com
Russian Federation, Moscow, 119991; Moscow, 119017

References

  1. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 с.
  2. Вомперский С.Э., Сирин А.А., Цыганова О.П., Валяева Н.А., Майков Д.А. Болота и заболоченные земли России: попытка анализа пространственного распределения и разнообразия // Известия РАН. Сер. географическая. 2005. № 5. С. 39–50.
  3. Гончарова О.Ю., Матышак Г.В., Тимофеева М.В., Чуванов С.В., Тархов М. О., Исаева А.И. Эмиссия СО2 почвами экотонной зоны севера Западной Сибири // Почвоведение. 2023. № 9. С. 1034–1048.
  4. Курганова И.Н., Лопес де Гереню В.О., Галлардо Ланчо Х.Ф., Ем К.Т. Оценка скорости минерализации органического вещества почв в лесных экосистемах внутриконтинентального умеренного, средиземноморского и тропического муссонного климата // Почвоведение. 2012. № 1. С. 82–94.
  5. Курганова И.Н., Лопес де Гереню В.О., Мякшина Т.Н., Сапронов Д.В., Хорошаев Д.А., Аблеева В.А. Температурная чувствительность дыхания почв луговых ценозов в зоне умеренно-континентального климата: анализ данных 25-летнего мониторинга // Почвоведение. 2023. № 9. С. 1059–1076.
  6. Ларгин И.Ф., Корчунов С.С., Малков Л.М. Справочник по торфу. М.: Недра, 1982, 760 с.
  7. Макаров М.И., Шулева М.С., Малышева Т.И., Меняйло О.В. Растворимость лабильных форм углерода и азота почв в К2SO4 разной концентрации // Почвоведение. 2013. № 4. С. 408–413.
  8. Матвиенко А.И., Громова М.С., Меняйло О.В. Влияние внесения минерального азота и глюкозы на температурную чувствительность (Q10) минерализации органического вещества почв // Почвоведение. 2023. № 5. С. 579–585.
  9. Матышак Г.В., Богатырев Л.Г., Гончарова О.Ю., Бобрик А.А. Особенности развития почв гидроморфных экосистем северной тайги Западной Сибири в условиях криогенеза // Почвоведение. 2017. № 10. С. 1155–1164.
  10. Матышак Г.В., Тархов М.О., Рыжова И.М., Гончарова О.Ю., Сефилян А.Р., Чуванов С.В., Петров Д.Г. Оценка температурной чувствительности эмиссии СО2 с поверхности торфяных почв севера Западной Сибири методом трансплантации почвенных монолитов // Почвоведение. 2021. № 7. С. 815–826.
  11. Матышак Г.В., Чуванов С.В., Гончарова О.Ю., Трифонова В.А., Тимофеева М.В., Исаева А.В., Тархов М.О. Влияние влажности на эмиссию СО2 из почв бугристых торфяников севера Западной Сибири // Почвоведение. 2023. № 4. С. 450–463.
  12. Руководство по летней учебной практике студентов-биологов на Звенигородской биостанции им. С.Н. Скадовского / Под. ред. Гаврилова В.М. М.: Изд-во Моск. ун-та. 2011. 432 с.
  13. Смагин А.В. Газовая фаза почв. М.: Изд-во Моск. ун-та. 2005. 301 с.
  14. Тархов М.О., Матышак Г.В., Рыжова И.М., Гончарова О.Ю., Бобрик А.А., Петров Д.Г., Петржик Н.М. Температурная чувствительность дыхания почв бугристых торфяников севера Западной Сибири // Почвоведение. 2019. № 8. С. 946–955.
  15. Теория и практика химического анализа почв / Под ред. Воробьевой Л.А. М.: ГЕОС, 2006. 400 с.
  16. Трофимов В.Т., Баду Ю.Б., Васильчук Ю.К., Кашпернюк П.И., Кудряшов В.Г, Фирсов Н.Г. Геокриологическое районирование Западно-Сибирской плиты. М.: Наука, 1987. 224 с.
  17. Хатит Р.Ю., Сушко С.В., Иващенко К.В., Ананьева Н.Д., Бочко ТФ. Температурная чувствительность минерализации органического вещества и функциональное разнообразие микробного сообщества почв городских парков вдоль широтного градиента // Вестник Моск. ун-та. 2021. Сер. 17, почвоведение. № 4. С. 47–55.
  18. Хомутов А.В., Бабкин Е.М., Тихонравова Я.В., Хайрулин Р.Р., Дворников Ю.Н., Бабкина Е.А., Каверин Д.А. и соавт. Комплексные исследования криолитозоны северо-восточной части Пур-Тазовского междуречья // Научный вестник Ямало-Ненецкого автономного округа. 2019. https://doi.org/10.26110/ARCTIC.2019.102.1.008
  19. Ananyeva N.D., Susyan E.A., Chernova O.V., Wirth S. Microbial respiration activities of soils from different climatic regions of European Russia // Eur. J. Soil Biol. 2008. V. 44. P. 147–157.
  20. Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221.
  21. Bekku Y.S., Nakatsubo T., Kume A., Adachi M., Koizumi H. Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils // Appl. Soil Ecology. 2003. V. 22. P. 205–210.
  22. Biskaborn B., Smith S., Noetzli J., Matthes H., Vieira G., Streletskiy D., Schoeneich P. et al. Permafrost is warming at a global scale // Nature Communication. 2019. V. 10. P. 264. https://doi.org/10.1038/s41467-018-08240-4
  23. Byun E., Rezanezhad F., Fairbairn L., Slowinski S., Basiliko N., Price J., Ouinton W. et al. Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands // Scientific Reports. 2021. V. 11. P. 23219. https://doi.org/10.1038/s41598-021-02606-3
  24. Chen S., Wang J., Zhang T., Hu Z. Climatic, soil, and vegetation controls of the temperature sensitivity (Q10) of soil respiration across terrestrial biomes // Global Ecology and Conservation. 2020. V. 22. https://doi.org/10.1016/j.gecco.2020.e00955
  25. Chen X., Tang J., Jiang L., Li B., Chen J., Fang C. Evaluating the impacts of incubation procedures on estimated Q10 values of soil respiration // Soil Biol. Biochem. 2010. V. 42. P. 2282–2288.
  26. Conant R., Drijber R., Haddix M.L., Parton W.J., Paul E., Plante A.F., Six J. et al. Sensitivity of organic matter decomposition to warming varies with its quality // Global Change Biology. 2008. V. 14. P. 868–877.
  27. Conant R., Ryan M., Agren G., Birge H.E., Davidson E.A., Eliasson P.E., Evans S.E. et al. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward // Global Change Biology. 2011. V. 17(11). P. 3392–3404.
  28. Davidson E.A., Janssens I.A Temperature sensitivity of soil carbon decomposition and feedbacks to climate change // Nature. 2006. V. 440. P. 165–173.
  29. Girkin N.T., Dhandapani S., Evers S., Ostle N., Turner B.L., Sjogersten S. Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat // Biogeochemistry. 2020. V. 147. P. 87–97.
  30. Gorham E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming // Ecological Applications. 1991. V. 1. P. 182–195.
  31. Haddix M. L., Plante A. F., Conant R. T., Six J., Steinweg J. M., Magrini‐Bair K., Paul E. A The role of soil characteristics on temperature sensitivity of soil organic matter // Soil Sci. Soc. Am. J. 2011. V. 75. P. 56–68. https://doi.org/10.2136/sssaj2010.0118
  32. Hamdi S., Moyano F., Sall S., Bernoux M., Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions // Soil Biol. Biochem. 2013. V. 58. P. 115–126.
  33. Helbig M., Humphreys E.R., Todd A. Contrasting Temperature Sensitivity of CO2 Exchange in Peatlands of the Hudson Bay Lowlands, Canada // J. Geophys. Res.: Biogeosciences. 2019. V. 124. P. 2126–2143.
  34. Hilasvuori E., Akujärvi A., Fritze H., Karhu K., Laiho R., P. Mäkiranta, Oinonen M. et al. Temperature sensitivity of decomposition in a peat profile // Soil Biol. Biochem. 2013. V. 67. P. 47–54.
  35. Hugelius G., Loisel J., Chadburn S., Yu Z. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw // Proceedings of the National Academy of Sciences. 2020. V. 117(34). P. 20438–20446.
  36. IPS 2008. Peatlands and Climate Change. International Peat Society, Finland.
  37. IUCN 2021. Issues Brief November 2021. Peatlands and Climate change. International Union for Conservation of Nature. Gland, Switzerland.
  38. Jia Y., Kuzyakov Y., Wang G., Tan W., Zhu B., Feng X. Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time // Land Degradation Development. 2020. V. 31. P. 632–645. https://doi.org/10.1002/ldr.3477
  39. Johnston A.S.A., Sibly R.M. The influence of soil communities on the temperature sensitivity of soil respiration // Nature Ecology Evolution. 2018. V. 2. P. 1597–1602.
  40. Karhu K., Auffret M D., Dungait J.A., Hopkins D.W., Prosser J.I., Singh B.K., Subke J.-A. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response // 2014. Nature. V. 513. P. 81–84. https://doi.org/10.1038/nature13604
  41. Kirschbaum M.U.F. The temperature dependence of organic matter decomposition–still a topic of debate // Soil Biol. Biochem. 2006. V. 38. P. 2510–2518.
  42. Kirschbaum M.U.F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage // Soil Biol. Biochem. 1995. V. 27. P. 753–760.
  43. Koven C.D., Hugelius G., Lawrence D.M., Wieder W.R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates // Nature Climate Change. 2017. https://doi.org/10.1038/NCLIMATE3421
  44. Laub M., Ali R.S., Demyan M.S., Nkwain Y.F., Poll C., Hogy P., Poyda A. et al. Modelling temperature sensitivity of soil organic matter decomposition: Splitting the pools // Soil Biol. Biochem. 2021. V. 153. https://doi.org/10.1016/j.soilbio.2020.108108
  45. Li J., Pei J., Pendall E., Fang C., Nie M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations // Soil Biol. Biochem. 2020. V. 141. https://doi.org/10.1016/j.soilbio.2019.107675
  46. Liu Y., He N., Zhu J., Xu L., Yu G., Niu S., Sun X. et al. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands // Global Change Biology. 2017. V. 23. P. 3393–3402. https://doi.org/10.1111/gcb.13613
  47. Lloyd J., Taylor J.A. On the temperature dependence of soil respiration // Functional Ecology. 1994. V. 8. P. 315–323.
  48. Meyer N., Welp G., Amelung W. The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes // Global Biogeochemical Cycles. 2018. V. 32. P. 306–323. https://doi.org/10.1002/2017GB005644
  49. Mundim K.C., Baraldi S., Machado H.G., Vieira F.M.C. Temperature coefficient (Q10) and its applications in biological systems: Beyond the Arrhenius theory // Ecological Modelling. 2020. V. 431. https://doi.org/10.1016/j.ecolmodel.2020.109127
  50. Numa K.B., Robinson J.M., Arcus V.L. Schipper L.A. Separating the temperature response of soil respiration derived from soil organic matter and added labile carbon compounds // Geoderma. 2021. V. 400. https://doi.org/10.1016/j.geoderma.2021.115128
  51. Peng S., Piao S., Wang T., Sun J., Shen Z. Temperature sensitivity of soil respiration in different ecosystems in China // Soil Biolo. Biochem. 2009. V. 41. P. 1008–1014.
  52. Qin S., Chen L., Fang K., Zhang Q., Wang. J., Liu F., Yu J., Yang Y. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities // Sci. Adv. 2019. V. 5. https://doi.org/10.1126/sciadv.aau121
  53. Rantanen M., Karpechko A.Y., Lipponen A., Nordling K., Hyvärinen O., Ruosteenoja K., Vihma T., Laaksonen A. The Arctic has warmed nearly four times faster than the Globe since 1979 // Commun. Earth Environ. 2022. V. 3(168).
  54. Ren S., Ding Z., Yan Z., Cao Y., Li J., Wang Y., Liu D. et al. Higher Temperature Sensitivity of Soil C Release to Atmosphere from Northern Permafrost Soils as Indicated by a Meta‐Analysis // Global Biogeochemical Cycles. 2020. V. 34. https://doi.org/10.1029/2020GB006688
  55. Rey A., Petsikos C., Jarvis P.G., Grace J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions // Eur. J. Soil Sci. 2005. V. 56. P. 589–599.
  56. Ribeiro K., Pacheco F.S., Ferreira J.W., Rodrigues de Sousa-Neto E., Hastie A., Krieger Filho G.C., Alvala P.C. et al. Tropical peatlands and their contribution to the global carbon cycle and climate change // Global Change Biology. 2021. V. 27(3). P. 489–505.
  57. Sirin A., Medvedeva M., Korotkov V., Itkin V., Minayeva T., Ilyasov., Suvorov G., Joosten H. Addressing Peatland Rewetting in Russian Federation Climate Reporting // Land 2021. V. 10. https://doi.org/10.3390/land10111200
  58. Smith V.R. Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic Island // Soil Biol. Biochem. 2005. V. 37. P. 81–91.
  59. Song Y., Liu C., Song C., Wang X., Ma X., Gao J., Gao S., Wang L. Linking soil organic carbon mineralization with soil microbial and substrate properties under warming in permafrost peatlands of Northeastern China // Catena. 2021. V. 203. https://doi.org/10.1016/j.catena.2021.105348
  60. Swails E.E., Ardon M., Krauss K.W., Peralta A.L., Emanuel R.E., Helton A.M., Morse J.L. et al. Response of soil respiration to changes in soil temperature and water table level in drained and restored peatlands of the south-eastern United States // Carbon Balance and Management. 2022. V. 17. P. 18. https://doi.org/10.1186/s13021-022-00219-5
  61. Tuomi M., Vanhala P., Karhu K., Fritze H., Liski J. Heterotrophic soil respiration–comparison of different models describing its temperature dependence // Ecological Modelling. 2008. V. 211. P. 182–190.
  62. UNEP 2022. Global Peatlands Assessment – The State of the World’s Peatlands: Evidence for action toward the conservation, restoration, and sustainable management of peatlands. Main Report. Global Peatlands Initiative. United Nations Environment Programme, Nairobi.
  63. von Lützow M., Kögel-Knabner I. Temperature sensitivity of soil organic matter decomposition – what do we know? // Biology and Fertility of Soils. 2009. V. 46. P. 1–15.
  64. Wang G., Zhou Y., Xu X., Ruan H., Wang J. Temperature Sensitivity of Soil Organic Carbon Mineralization along an Elevation Gradient in the Wuyi Mountains, China // PLoS ONE. 2013. V. 8(1). https://doi.org/10.1371/journal.pone.0053914.
  65. Wang Q., Zhao X., Chen L., Yang Q., Chen S., Zhang W. Global synthesis of temperature sensitivity of soil organic carbon decomposition: Latitudinal patterns and mechanisms // Functional Ecology. 2019. V. 33. P. 514–523.
  66. Wang X., Piao S., Ciais P., Janssens I.A., Reichstein M., Peng S., Wang T. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? // Soil Biol. Biochem. 2010. V. 42. P. 1728–1734.
  67. Wu D., Liu S., Wu X., Yang X., Xu T., Xu Z., Shi H. Diagnosing the Temperature Sensitivity of Ecosystem Respiration in Northern High-Latitude Regions // J. Geophys. Res.: Biogeosciences. 2021. V. 126. https://doi.org/10.1029/2020JG005998
  68. Wu Q., Ye R., Bridgham S.D., Jin Q. Limitations of the Q10 Coefficient for Quantifying Temperature Sensitivity of Anaerobic Organic Matter Decomposition: A Modelling Based Assessment // J. Geophys. Res.: Biogeosciences. 2021. V. 126. https://doi.org/10.1029/2021JG006264
  69. Xiang W., Freeman C. Annual variation of temperature sensitivity of soil organic carbon decomposition in North peatlands: implications for thermal responses of carbon cycling to global warming // Environ. Geology. 2009. V. 58. P. 499–508.
  70. Yang C., Liu N., Zhang Y. Effects of aggregates size and glucose addition on soil organic carbon mineralization and Q10 values under wide temperature change conditions // Eur. J. Soil Biol. 2017. V. 80. P. 77–84.
  71. Yang S., Wu H., Wang Z., Semenov M.V., Ye J., Yin L., Wang X. et al. Linkages between the temperature sensitivity of soil respiration and microbial life strategy are dependent on sampling season // Soil Biol. Biochem. 2022. V. 172. https://doi.org/10.1016/j.soilbio.2022.108758
  72. Yu Z., Loisel J., Brosseau D.P., Beilman D.W., Hunt S.J. Global peatland dynamics since the Last Glacial Maximum // Geophys. Res. Lett. 2010. V. 37(13). P. 4071–4085. https://doi.org/10.1029/2010GL043584

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1 Exponential dependence of the rate of mineralization of organic matter (RMOM) on temperature for samples of peat oligotrophic soils of the southern tundra (a), northern taiga (b) and the subzone of coniferous-broadleaf forests (c).

Download (239KB)
3. Fig. 2. Exponential dependence of the microbial respiration rate (MRR) on temperature for samples of oligotrophic peat soils of the southern tundra (a), northern taiga (b) and the subzone of coniferous-broadleaf forests (c).

Download (200KB)

Copyright (c) 2024 Russian Academy of Sciences