Bacterial cell wall components as targets for searching for new antibacterial compounds. Methods of study
- Authors: Chingizova E.A.1, Novikova O.D.1, Portnyagina O.Y.1, Aminin D.L.1
-
Affiliations:
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
- Issue: Vol 59, No 3 (2025)
- Pages: 335-365
- Section: ОБЗОРЫ
- URL: https://modernonco.orscience.ru/0026-8984/article/view/689551
- DOI: https://doi.org/10.31857/S0026898425030019
- EDN: https://elibrary.ru/PTQOAV
- ID: 689551
Cite item
Abstract
In the current world, antibiotic resistance is one of the most serious threats to both human health and food security. Finding new ways to prevent and overcome the formation of pathogen resistance to antibiotics is an extremely important and urgent task of modern medical science. All bacteria, except mycoplasmas, have a cell wall in which various enzymes, receptors, transporters, channels and antigens are localized. This review is devoted to describing the structure of the major elements of bacterial cell walls and enzymes involved in their biosynthesis and used as molecular targets for screening and selection of new effective antibiotics. Special attention is paid to methods for studying the functional activity and inhibition of these targets. In addition, the review describes the functional characteristics of pore-forming proteins from the outer membrane of Gram-negative bacteria and the molecular mechanisms of antibiotic penetration through porin channels. Analysis of the structure and functional features of targets of different classes of antibiotics is the basis for developing new strategies to overcome bacterial resistance.
Keywords
Full Text

About the authors
E. A. Chingizova
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Author for correspondence.
Email: martyyas@mail.ru
Russian Federation, Vladivostok, 690022
O. D. Novikova
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: martyyas@mail.ru
Russian Federation, Vladivostok, 690022
O. Y. Portnyagina
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: martyyas@mail.ru
Russian Federation, Vladivostok, 690022
D. L. Aminin
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: martyyas@mail.ru
Russian Federation, Vladivostok, 690022
References
- Супотницкий М.В. (2011) Механизмы развития резистентности к антибиотикам у бактерий. БИОпрепараты. Профилактика, диагностика, лечение. 2(42), 4–13.
- Даудова А.Д., Демина Ю.З., Генатуллина Г.Н., Абдрахманова Р.О., Баева Г.Р., Ясенявская А.Л., Рубальский О.В. (2023) Антибиотикорезистентность. Вызов современности. Антибиотики и химиотерапия. 68(3–4), 66–75.
- Monciardini P., Iorio M., Maffioli S., Sosio M., Donadio S. (2014) Discovering new bioactive molecules from microbial sources. Microb. Biotechnol. 7(3), 209–220. https://doi.org/10.1111/1751-7915.12123
- Kardos N., Demain A.L. (2011) Penicillin: The medicine with the greatest impacton therapeutic outcomes. Appl. Microbiol. Biotechnol. 92(4), 677–687. https://doi.org/10.1007/s00253-011-3587-6
- Monserrat-Martinez A., Gambin Y., Sierecki E. (2019) Thinking outside the bug: molecular targets and strategies to overcome antibiotic resistance. Int. J. Mol. Sci. 20(6), 1255. https://doi.org/10.3390/ijms20061255
- Dörr T., Moynihan P.J., Mayer C. (2019) Editorial: bacterial cell wall structure and dynamics. Front. Microbiol. 10, 2051. https://doi.org/10.3389/fmicb.2019.02051
- Kuhn A. (2019) The bacterial cell wall and membrane – a treasure chest for antibiotic targets. Subcell. Biochem. 92, 1–5. https://doi.org/10.1007/978-3-030-18768-2_1
- Baran A., Kwiatkowska A., Potocki L. (2023) Antibiotics and bacterial resistance – a short story of an endless arms race. Int. J. Mol. Sci. 24(6), 5777. https://doi.org/10.3390/ijms24065777
- Munita J.M., Arias C.A. (2016) Mechanisms of antibiotic resistance. Microbiol. Spectr. 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016- 2015.
- Егоров А.М., Уляшова М.М., Рубцова М.Ю. (2018) Бактериальные ферменты и резистентность к антибиотикам. Acta Naturae. 10(4), 39.
- Green D.W. (2002) The bacterial cell wall as a source of antibacterial targets. Expert Opin. Ther. Targets. 6(1), 1–19. https://doi.org/10.1517/14728222.6.1.1
- Bugg T.D., Braddick D., Dowson C.G., Roper D.I. (2011) Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol. 29(4), 167–173. https://doi.org/10.1016/j.tibtech.2010.12.006
- Gautam A., Vyas R., Tewari R. (2011) Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit. Rev. Biotechnol. 31(4), 295–336. https://doi.org/10.3109/07388551.2010.525498
- Sauvage E., Kerff F., Terrak M., Ayala J.A., Charlier P. (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32(2), 234–258. https://doi.org/10.1111/j.1574-6976.2008.00105.x
- Kong K.F., Schneper L., Mathee K. (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS. 118(1), 1–36. https://doi.org/10.1111/j.1600-0463.2009.02563.x
- Schneider T., Sahl H.G. (2010) An oldie but a goodie cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 300(2–3), 161–169. https://doi.org/10.1016/j.ijmm.2009.10.005
- Coates A.R., Halls G., Hu Y. (2011) Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 163(1), 184–194. https://doi.org/10.1111/j.1476-5381.2011.01250.x
- Wise R. (2011) BSAC Working party on the urgent need: Regenerating antibacterial drug discovery and development. The urgent need for new antibacterial agents. J. Antimicrob. Chemother. 66(9), 1939–1940. https://doi.org/10.1093/jac/dkr261
- Larsson C. (2012) Bacterial sortase A as a drug target. Uppsala University Press: Sweden, 49 p.
- Garde S., Chodisetti P.K., Reddy M. (2021) Peptidoglycan: structure, synthesis, and regulation. EcoSal Plus. 9(2), eESP-0010-2020. https://doi.org/10.1128/ecosalplus.ESP-0010-2020
- Barreteau H., Kovac A., Boniface A., Sova M., Gobec S., Blanot D. (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32(2), 168–207. https://doi.org/10.1111/j.1574-6976.2008.00104.x
- El Zoeiby A., Sanschagrin F., Levesque R.C. (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47(1), 1–12. https://doi.org/10.1046/j.1365-2958.2003.03289.x
- Kahan F.M., Kahan J.S., Cassidy P.J., Kropp H. (1974) The mechanism of action off osfomycin (phosphonomycin). Ann. NY Acad. Sci. 235, 364–386. https://doi.org/10.1111/j.1749-6632.1974.tb43277.x
- Eniyan K., Kumar A., Rayasam G.V., Perdih A., Bajpai U. (2016) Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis. Sci. Rep. 13(6), 35134. https://doi.org/10.1038/srep35134
- Shinde Y., Ahmad I., Surana S., Patel H. (2021) The Mur enzymes chink in the armour of Mycobacterium tuberculosis cell wall. Eur. J. Med. Chem. 15(222), 113568. https://doi.org/10.1016/j.ejmech.2021.113568
- Hrast M., Rožman K., Ogris I., Škedelj V., Patin D., Sova M., Barreteau H., Gobec S., Grdadolnik S.G., Zega A. (2019) Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J. Enzyme Inhib. Med. Chem. 34(1), 1010–1017. https://doi.org/10.1080/14756366.2019.1608981
- Yang Y., Severin A., Chopra R., Krishnamurthy G., Singh G., Hu W., Keeney D., Svenson K., Petersen P.J., Labthavikul P., Shlaes D.M., Rasmussen B.A., Failli A.A., Shumsky J.S., Kutterer K.M., Gilbert A., Mansour T.S. (2006) 3,5-dioxopyrazolidines, novel inhibitors of UDP-N- acetylenolpyruvylglucosamine reductase (MurB) with activity against gram-positive bacteria. Antimicrob. Agents Chemother. 50(2), 556–564. https://doi.org/10.1128/AAC.50.2.556-564.2006
- Shapiro A.B., Livchak S., Gao N., Whiteaker J., Thresher J., Jahić H., Huang J., Gu R.F. (2012) A homogeneous, high-throughput-compatible, fluorescence intensity-based assay for UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with nanomolar product detection. J. Biomol. Screen. 17(3), 327–338. https://doi.org/10.1177/1087057111425188
- Marquardt J.L., Siegele D.A., Kolter R., Walsh C.T. (1992) Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J. Bacteriol. 174(17), 5748–5752. https://doi.org/10.1128/jb.174.17.5748-5752.1992
- Baum E.Z., Montenegro D.A., Licata L., Turchi I., Webb G.C., Foleno B.D., Bush K. (2001) Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob. Agents Chemother. 45(11), 3182–3188. https://doi.org/10.1128/AAC.45.11.3182-3188.2001
- Osman K., Evangelopoulos D., Basavannacharya C., Gupta A., McHugh T.D., Bhakta S., Gibbons S. (2012) An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. Int. J. Antimicrob. Agents. 39(2), 124–129. https://doi.org/10.1016/j.ijantimicag.2011.09.018
- Humnabadkar V., Prabhakar K.R., Narayan A., Sharma S., Guptha S., Manjrekar P., Chinnapattu M., Ramachandran V., Hameed S.P., Ravishankar S., Chatterji M. (2014) UDP-N-acetylmuramic acid l-alanine ligase (MurC) inhibition in a tolC mutant Escherichia coli strain leads to cell death. Antimicrob. Agents Chemother. 8(10), 6165–6171. https://doi.org/10.1128/AAC.02890-14
- Lanzetta P.A., Alvarez L.J., Reinach P.S., Candia O.A. (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100(1), 95–97. https://doi.org/10.1016/0003-2697(79)90115-5
- McCoy A.J., Sandlin R.C., Maurelli A.T. (2003) In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J. Bacteriol. 185(4), 1218–1228. https://doi.org/10.1128/JB.185.4.1218-1228.2003
- Kumar A., Saranathan R., Prashanth K., Tiwary B.K., Krishna R. (2017) Inhibition of the MurA enzyme in Fusobacterium nucleatum by potential inhibitors identified through computational and in vitro approaches. Mol. BioSystems. 13(5), 939–954. https://doi.org/10.1039/c7mb00074j
- Keeley A., Ábrányi-Balogh P., Hrast M., Imre T., Ilaš J., Gobec S., Keserű G.M. (2018) Heterocyclic electrophiles as new MurA inhibitors. Arch. Pharm. (Weinheim). 351(12), e1800184. https://doi.org/10.1002/ardp.201800184
- Benson T.E., Marquardt J.L., Marquardt A.C., Etzkorn F.A., Walsh C.T. (1993) Over expression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry. 32(8), 2024–30. https://doi.org/10.1021/bi00059a019
- Tomasiс T., Zidar N., Kovac A., Turk S., Simcic M., Blanot D., Müller-Premru M., Filipic M., Grdadolnik S.G., Zega A., Anderluh M., Gobec S., Kikelj D., Peterlin Masic L. (2010) 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. Chem. Med. Chem. 5(2), 286–295. https://doi.org/10.1002/cmdc.200900449
- Tomasiс T., Kovaс A., Klebe G., Blanot D., Gobec S., Kikelj D., Masic L.P. (2012) Virtual screening for potential inhibitors of bacterial MurC and MurD ligases. J. Mol. Model. 18(3), 1063–1072. https://doi.org/10.1007/s00894-011-1139-8
- Ravishankar S., Kumar V.P., Chandrakala B., Jha R.K., Solapure S.M., de Sousa S.M. (2005) Scintillation proximity assay for inhibitors of Escherichia coli MurG and, optionally, MraY. Antimicrob. Agents Chemother. 49(4), 1410–1418. https://doi.org/10.1128/aac.49.4.1410-1418.2005
- Solapure S.M., Raphael P., Gayathri C.N., Barde S.P., Chandrakala B., Das K.S., De Sousa S.M. (2005) Development of a microplate-based scintillation proximity assay for MraY using a modified substrate. J. Biomol. Screen. 10(2), 149–156. https://doi.org/10.1177/1087057104272007
- Duncan K., van Heijenoort J., Walsh C.T. (1990) Purification and characterization of the D-alanyl-D-alanine-adding enzyme from Escherichia coli. Biochemistry. 29(9), 2379–2386. https://doi.org/10.1021/bi00461a023
- Anderson J.S., Meadow P.M., Haskin M.A., Strominger J.L. (1966) Biosynthesis of the peptidoglycan of bacterial cell walls. I. Utilization of uridine diphosphate acetylmuramyl pentapeptide and uridine diphosphate acetylglucosamine for peptidoglycan synthesis by particulate enzymes from Staphylococcus aureus and Micrococcus lysodeikticus. Arch. Biochem. Biophys. 116(1), 487–515. https://doi.org/10.1016/0003-9861(66)90056-7
- Baum E.Z., Crespo-Carbone S.M., Abbanat D., Foleno B., Maden A., Goldschmidt R., Bush K. (2006) Utility of muropeptide ligase for identification of inhibitors of the cell wall biosynthesis enzyme MurF. Antimicrob. Agents Chemother. 50(1), 230–236. https://doi.org/10.1128/AAC.50.1.230-236.2006
- Baum E.Z., Crespo-Carbone S.M., Klinger A., Foleno B.D., Turchi I., Macielag M., Bush K. (2007) A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia coli. Antimicrob. Agents Chemother. 51(12), 4420–4426. https://doi.org/10.1128/AAC.00845-07
- Crouvoisier M., Mengin-Lecreulx D., van Heijenoort J. (1999) UDP-N-acetylglucosamine:N-acetylmuramoyl-(pentapeptide) pyrophosphoryl undecaprenol N-acetylglucosamine transferase from Escherichia coli: overproduction, solubilization, and purification. FEBS Lett. 449(2–3), 289–292. https://doi.org/10.1016/s0014-5793(99)00412-3
- Ha S., Walker D., Shi Y., Walker S. (2000) The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9(6), 1045–1052. https://doi.org/10.1110/ps.9.6.1045
- Hu Y., Chen L., Ha S., Gross B., Falcone B., Walker D., Mokhtarzadeh M., Walker S. (2003) Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc. Natl. Acad. Sci. USA. 100(3), 845–849. https://doi.org/10.1073/pnas.0235749100
- Liu Y., Breukink E. (2016) The membrane steps of bacterial cell wall synthesis as antibiotic targets. Antibiotics (Basel). 5(3), 28. https://doi.org/10.3390/antibiotics5030028
- Mengin-Lecreulx D., Texier L., Rousseau M., van Heijenoort J. (1991) The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J. Bacteriol. 173(15), 4625–4636. https://doi.org/10.1128/jb.173.15.4625-4636.1991
- Lopez-Marquez R.L., Theory L., Palmgren M.G., Pomorski T.G. (2014) P4-ATPases: lipid flippases in cell membranes. Pflugers. Arch. 466(7), 1227–1240. https://doi.org/10.1007/s00424-013-1363-4
- Hoffman G.G. (2005) Octamer formation and stability in mitochondrial creatine kinase of protostomic invertebrates: Doctoral dissertation, Florida State University.
- Wu G. (2020) The important role of taurine, creatine, carnosine, anserin and 4-hydroxyproline in human nutrition and health. Amino Acids. 52(3), 329–360. https://doi.org/10.1007/s00726-020-02823-6
- Daleke D.L. (2003) Regulation of phospholipid asymmetry of the trans-bilayer plasma membrane. J. Lipid Res. 44(2), 233–242. https://doi.org/10.1194/JLR.R200019- JLR200
- Ansari I.U., Longacre M.J., Paulusma C.C., Stoker S.W., Kendrick M.A., MacDonald M.J. (2015) Characteristics of phospholipid translocases (flippases) of P4 ATPase in human and rat pancreatic beta cells: their gene suppression inhibits insulin secretion. J. Biol. Chem. 290(38), 23110–23123. https://doi.org/10.1074/jbc. M115.655027
- Pianalto K.M., Billmyre R.B., Telzrow C.L., Alspaugh J.A. (2019) Roles for stress response and cell wall biosynthesis pathways in caspofungin tolerance in Cryptococcus neoformans. Genetics. 213(1), 213–227. https://doi.org/10.1534/genetics.119.302290
- Kraus P.R., Fox D. S., Cox G.M., Heitman J. (2003) The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol. Microbiol. 48(5). 1377–1387. https://doi.org/10.1046/j.1365-2958.2003.03508.x
- Del Poeta M., Cruz M. C., Cardenas M.E., Perfect J.R., Heitman J. (2000) Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob. Agents Chemother. 44(3), 739–746. https://doi.org/10.1128/AAC.44.3.739-746.2000
- Cao C., Xue C. (2020) More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans. Microb. Cell. 7(4), 115–118. https://doi.org/10.15698/mic2020.04.714
- Cao C., Wang Y., Husain S., Soteropoulos P., Xue C.A. (2019) Mechanosensitive channel governs lipid flippase-mediated echinocandin resistance in Cryptococcus neoformans. mBio. 10(6), e01952-19. https://doi.org/10.1128/mBio.01952-19
- Illien F., Rodriguez N., Amoura M., Joliot A., Pallerla M., Cribier S., Burlina F., Sagan S. (2016) Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification. Sci. Rep. 6, 36938. https://doi.org/10.1038/srep36938
- Carpenter E.P., Beis K., Cameron A.D., Iwata S. (2008) Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol. 18(5), 581–586. https://doi.org/10.1016/j.sbi.2008.07.001
- Avci F.G., Akbulut B.S., Ozkirimli E. (2018) Membrane active peptides and their biophysical characterization. Biomolecules. 8(3), 77. https://doi.org/10.3390/biom8030077
- Tancer R.J. (2022) “Flippase Inhibitors as Antimicrobial Agents”. Seton Hall University Dissertations and Theses (ETDs). 2981. https://scholarship.shu.edu/dissertations/2981
- Suzuki H., van Heijenoort Y., Tamura T., Mizoguchi J., Hirota Y., van Heijenoort J. (1980) In vitro peptidoglycan polymerization catalysed by penicillin binding protein 1b of Escherichia coli K-12. FEBS Lett. 110(2), 245–249. https://doi.org/10.1016/0014-5793(80)80083-4
- Ishino F., Mitsui K., Tamaki S., Matsuhashi M. (1980) Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem. Biophys Res. Commun. 97(1), 287–293. https://doi.org/10.1016/s0006-291x(80)80166-5
- Nakagawà J., Tamaki S., Matsuhashi M. (1979) Purified penicillin binding proteins 1Bs from Escherichia coli membrane showing activities of both peptidoglycan polymerase and peptidoglycan crosslinking enzyme. Agric. Biol. Chem. 43(6), 1379–1380. https://doi.org/10.1080/00021369.1979.10863634
- Nakagawa J., Tamaki S., Tomioka S., Matsuhashi M. (1984) Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J. Biol. Chem. 259(22), 13937–13946.
- Terrak M., Ghosh T.K., van Heijenoort J., Van Beeumen J., Lampilas M., Aszodi J., Ayala J.A., Ghuysen J.M., Nguyen-Distèche M. (1999) The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol. Microbiol. 34(2), 350–364. https://doi.org/10.1046/j.1365-2958.1999.01612.x
- Strominger J.L., Izaki K., Matsuhashi M., Tipper D.J. (1967) Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Fed. Proc. 26(1), 9–22.
- Page M.P. (2012) Beta-lactam antibiotics. In: Antibiotic Discovery and Development. Eds Dougherty T.J., Pucci M.J. Springer, US, 79–117.
- Halliday J., McKeveney D., Muldoon C., Rajaratnam P., Meutermans W. (2006) Targeting the forgotten transglycosylases. Biochem. Pharmacol. 71(7), 957–967. https://doi.org/10.1016/j.bcp.2005.10.030
- Meadow P.M., Anderson J.S., Strominger J.L. (1964) Enzymatic polymerization of UDP-acetylmuramyl.L-ala.D-glu.L-lys.D-ala.D-ala and UDP-acetylglucosamine by a particulate enzyme from Staphylococcus aureus and its inhibition by antibiotics. Biochem. Biophys. Res. Commun. 14, 382–387. https://doi.org/10.1016/s0006-291x(64)80014-0
- Van Heijenoort Y., Derrien M., van Heijenoort J. (1978) Polymerization by transglycosylation in the biosynthesis of the peptidoglycan of Escherichia coli K 12 and its inhibition by antibiotics. FEBS Lett. 89(1), 141–144. https://doi.org/10.1016/0014-5793(78)80540-7
- Huang C.Y., Shih H.W., Lin L.Y., Tien Y.W., Cheng T.J., Cheng W.C., Wong C.H., Ma C. (2012) Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism. Proc. Natl. Acad. Sci. USA. 109(17), 6496–6501. https://doi.org/10.1073/pnas.1203900109
- Chen L., Walker D., Sun B., Hu Y., Walker S., Kahne D. (2003) Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc. Natl. Acad. Sci. USA. 100(10), 5658–5663. https://doi.org/10.1073/pnas.0931492100
- Hara H., Suzuki H. (1984) A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli. FEBS Lett. 168(1), 155–160. https://doi.org/10.1016/0014-5793(84)80226-4
- Galley J.D., Nelson M.C., Yu Z., Dowd S.E., Walter J., Kumar P.S., Lyte M., Bailey M.T. (2014) Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 14, 189. https://doi.org/10.1186/1471-2180-14-189
- Born P., Breukink E., Vollmer W. (2006) In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J. Biol. Chem. 281(37), 26985–26993. https://doi.org/10.1074/jbc.M604083200
- Izaki K., Matsuhashi M., Strominger J.L. (1968) Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J. Biol. Chem. 243(11), 3180–3192.
- Mirelman D., Yashouv-Gan Y., Schwarz U. (1976) Peptidoglycan biosynthesis in a thermosensitive division mutant of Escherichia coli. Biochemistry. 15(9), 1781–1790. https://doi.org/10.1021/bi00654a001
- de Jonge B.L., Chang Y.S., Gage D., Tomasz A. (1992) Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J. Biol. Chem. 267(16), 11248–11254.
- Barrett D., Wang T.S., Yuan Y., Zhang Y., Kahne D., Walker S. (2007) Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. J. Biol. Chem. 282(44), 31964–31971. https://doi.org/10.1074/jbc.M705440200
- Helassa N., Vollmer W., Breukink E., Vernet T., Zapun A. (2012) The membrane anchor of penicillin-binding protein PBP2a from Streptococcus pneumoniae influences peptidoglycan chain length. FEBS J. 279(11), 2071–2081. https://doi.org/10.1111/j.1742-4658.2012.08592.x
- Schwartz B., Markwalder J.A., Wang Y. (2001) Lipid II: total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli. J. Am. Chem. Soc. 123(47), 11638–11643. https://doi.org/10.1021/ja0166848
- Schwartz B., Markwalder J.A., Seitz S.P., Wang Y., Stein R.L. (2002) A kinetic characterization of the glycosyltransferase activity of Eschericia coli PBP1b and development of a continuous fluorescence assay. Biochemistry. 41(41), 12552–12561. https://doi.org/10.1021/bi026205x
- Bertsche U., Breukink E., Kast T., Vollmer W. (2005) In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J. Biol. Chem. 280(45), 38096–38101. https://doi.org/10.1074/jbc.M508646200
- Biboy J., Bui N.K., Vollmer W. (2013) In vitro peptidoglycan synthesis assay with lipid II substrate. Methods Mol. Biol. 966, 273–288. https://doi.org/10.1007/978-1-62703-245-2_17
- Jha R.K., de Sousa S.M. (2006) Microplate assay for inhibitors of the transpeptidase activity of PBP1b of Escherichia coli. J. Biomol. Screen. 11(8), 1005–1014. https://doi.org/10.1177/1087057106294364
- Chandrakala B., Elias B.C., Mehra U., Umapathy N.S., Dwarakanath P., Balganesh T.S., de Sousa S.M. (2001) Novel scintillation proximity assay for measuring membrane-associated steps of peptidoglycan biosynthesis in Escherichia coli. Antimicrob. Agents Chemother. 45(3), 768–775. https://doi.org/10.1128/AAC.45.3.768-775.2001
- Chandrakala B., Shandil R.K., Mehra U., Ravishankar S., Kaur P., Usha V., Joe B., de Sousa S.M. (2004) High-throughput screen for inhibitors of transglycosylase and/or transpeptidase activities of Escherichia coli penicillin binding protein 1b. Antimicrob. Agents Chemother. 48(1), 30–40. https://doi.org/10.1128/AAC.48.1.30-40.2004
- Ramachandran V., Chandrakala B., Kumar V.P., Usha V., Solapure S.M., de Sousa S.M. (2006) Screen for inhibitors of the coupled transglycosylase-transpeptidase of peptidoglycan biosynthesis in Escherichia coli. Antimicrob. Agents Chemother. 50(4), 1425–1432. https://doi.org/10.1128/AAC.50.4.1425-1432.2006
- Adam M., Damblon C., Jamin M., Zorzi W., Dusart V., Galleni M., el Kharroubi A., Piras G., Spratt B.G., Keck W. Coyette J., Ghuysen J.M., Nguyen-Disteche M., Frere J.M. (1991) Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem. J. 279(2), 2601–2604. https://doi.org/10.1042/bj2790601
- Zuegg J., Muldoon C., Adamson G., McKeveney D., Thanh G.L., Premraj R., Becker B., Cheng M., Elliott A.G., Huang J.X., Butler M.S., Bajaj M., Seifert J., Singh L., Galley N.F., Roper D.I., Lloyd A.J., Dowson C.G., Cheng T.-J., Cheng W.-C., Demon D., Meyer E., Meutermans W., Cooper M.A. (2015) Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nat. Commun. 6, 7719. https://doi.org/10.1038/ncomms8719
- Offant J., Terrak M., Derouaux A., Breukink E., Nguyen-Distèche M., Zapun A., Vernet T. (2010) Optimization of conditions for the glycosyltransferase activity of penicillin-binding protein 1a from Thermotoga maritima. FEBS J. 277(20), 4290–4298. https://doi.org/10.1111/j.1742-4658.2010.07817.x
- Derouaux A., Turk S., Olrichs N.K., Gobec S., Breukink E., Amoroso A., Offant J., Bostock J., Mariner K., Chopra I., Vernet T., Zervosen A., Joris B., Frère J.M., Nguyen-Distèche M., Terrak M. (2011) Small molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor. Biochem. Pharmacol. 81(9), 1098–1105. https://doi.org/10.1016/j.bcp.2011.02.008
- Cheng T.J., Sung M.T., Liao H.Y., Chang Y.F., Chen C.W., Huang C.Y., Chou L.Y., Wu Y.D., Chen Y.H., Cheng Y.S., Wong C.H., Ma C., Cheng W.C. (2008) Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics. Proc. Natl. Acad. Sci. USA. 105(2), 431–436. https://doi.org/10.1073/pnas.0710868105
- Obeng E.M., Dullah E.C., Razak N.S.A., Danquah M.K., Budiman C., Ongkudon C.M. (2017) Elucidating endotoxin-biomolecule interactions with FRET: extending the frontiers of their supramolecular complexation. J. Biol. Methods. 4(2), e71. https://doi.org/10.14440/jbm.2017.172
- Spratt B.G. (1977) Properties of the penicillin-binding proteins of Escherichia coli K12. Eur. J. Biochem. 72(2), 341–352. https://doi.org/10.1111/j.1432-1033.1977.tb11258.x
- Roychoudhury S., Kaiser R.E., Brems D.N., Yeh W.K. (1996) Specific interaction between beta-lactams and soluble penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: development of a chromogenic assay. Antimicrob. Agents Chemother. 40(9), 2075–2079. https://doi.org/10.1128/AAC.40.9.2075
- Branstrom A.A., Midha S., Goldman R.C. (2002) In situ assay for identifying inhibitors of bacterial transglycosylase. FEMS Microbiol. Lett. 191(2), 187–190. https://doi.org/10.1111/j.1574-6968.2000.tb09338.x
- Sun D., Cohen S., Mani N., Murphy C., Rothstein D.M. (2002) A pathway-specific cell based screening system to detect bacterial cell wall inhibitors. J. Antibiot. (Tokyo). 55(3), 279–287. https://doi.org/10.7164/antibiotics.55.279
- Sauvage E., Terrak M. (2016) Glycosyltransferases and transpeptidases/penicillin-binding proteins: valuable targets for new antibacterials. Antibiotics (Basel). 5(1), 12. https://doi.org/10.3390/antibiotics5010012
- Vollmer W., Höltje J.V. (2000) A simple screen for murein transglycosylase inhibitors. Antimicrob. Agents Chemother. 44(5), 1181–1185. https://doi.org/10.1128/AAC.44.5.1181-1185.2000
- Barbosa M.D., Ross H.O., Hillman M.C., Meade R.P., Kurilla M.G., Pompliano D.L. (2002) A multitarget assay for inhibitors of membrane-associated steps of peptidoglycan biosynthesis. Anal. Biochem. 306(1), 17–22. https://doi.org/10.1006/abio.2001.5691
- Barbosa M.D., Yang G., Fang J., Kurilla M.G., Pompliano D.L. (2002) Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrob. Agents Chemother. 46(4), 943–946. https://doi.org/10.1128/AAC.46.4.943-946.2002
- Alksne L.E., Projan S.J. (2000) Bacterial virulence as a target for antimicrobial chemotherapy. Curr. Opin. Biotechnol. 11(6), 625–636. https://doi.org/10.1016/s0958-1669(00)00155-5
- Mazmanian S.K., Liu G., Ton-That H., Schneewind O. (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science. 285(5428), 760–763. https://doi.org/10.1126/science.285.5428.760
- Mazmanian S.K., Liu G., Jensen E.R., Lenoy E., Schneewind O. (2000) Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA. 97(10), 5510–5515. https://doi.org/10.1073/pnas.080520697
- Mazmanian S.K., Ton-That H., Su K., Schneewind O. (2002) An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA. 99(4), 2293–2298. https://doi.org/10.1073/pnas.032523999
- Mazmanian S.K., Skaar E.P., Gaspar A.H., Humayun M., Gornicki P., Jelenska J., Joachmiak A., Missiakas D.M., Schneewind O. (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science. 299(5608), 906–909. https://doi.org/10.1126/science.1081147
- Hendrickx A.P., Budzik J.M., Oh S.Y., Schneewind O. (2011) Architects at the bacterial surface – sortases and the assembly of pili with isopeptide bonds. Nat. Rev. Microbiol. 9(3), 166–176. https://doi.org/10.1038/nrmicro2520
- Schneewind O., Missiakas D.M. (2012) Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 367(1592), 1123–1139. https://doi.org/10.1098/rstb.2011.0210
- Maresso A.W., Wu R., Kern J.W., Zhang R., Janik D., Missiakas D.M., Duban M.E., Joachimiak A., Schneewind O. (2007) Activation of inhibitors by sortase triggers irreversible modification of the active site. J. Biol. Chem. 282(32), 23129–23139. https://doi.org/10.1074/jbc.M701857200
- Marraffini L.A., Schneewind O. (2005) Anchor structure of staphylococcal surface proteins. V. Anchor structure of the sortase B substrate IsdC. J. Biol. Chem. 280(16), 16263–16271. https://doi.org/10.1074/jbc.M500071200
- Ton-That H., Liu G., Mazmanian S.K., Faull K.F., Schneewind O. (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA. 96(22), 12424–12429. https://doi.org/10.1073/pnas.96.22.12424
- Jacobitz A.W., Kattke M.D., Wereszczynski J., Clubb R.T. (2017) Sortase transpeptidases: structural biology and catalytic mechanism. Adv. Protein Chem. Struct. Biol. 109, 223–264. https://doi.org/10.1016/bs.apcsb.2017.04.008
- Maresso A.W., Schneewind O. (2008) Sortase as a target of anti-infective therapy. Pharmacol. Rev. 60(1), 128–141. https://doi.org/10.1124/pr.107.07110
- Kang S.S., Kim J.G., Lee T.H., Oh K.B. (2006) Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol. Pharm. Bull. 29(8), 1751–1755. https://doi.org/10.1248/bpb.29.1751
- Kim S.H., Shin D.S., Oh M.N., Chung S.C., Lee J.S., Chang I.M., Oh K.B. (2003) Inhibition of sortase, a bacterial surface protein anchoring transpeptidase, by beta-sitosterol-3-O-glucopyranoside from Fritillaria verticillata. Biosci. Biotechnol. Biochem. 67(11), 2477–2479. https://doi.org/10.1271/bbb.67.2477
- Wang L., Bi C., Cai H., Liu B., Zhong X., Deng X., Wang T., Xiang H., Niu X., Wang D. (2015) The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front. Microbiol. 6, 1031. https://doi.org/10.3389/fmicb.2015.01031
- Wang J., Li H., Pan J., Dong J., Zhou X., Niu X., Deng X. (2018) Oligopeptide targeting sortase A as potential anti-infective therapy for Staphylococcus aureus. Front. Microbiol. 9, 245. https://doi.org/10.3389/fmicb.2018.00245
- Nitulescu G., Nicorescu I.M., Olaru O.T., Ungurianu A., Mihai D.P., Zanfirescu A., Nitulescu G.M., Margina D. (2017) Molecular docking and screening studies of new natural sortase A inhibitors. Int. J. Mol. Sci. 18(10), 2217. https://doi.org/10.3390/ijms18102217
- Armstrong J.J., Baddiley J., Buchanan J.G., Carss B., Greenberg G.R. (1958) Isolation and structure of ribitol phosphate derivatives (teichoic acids) from bacterial cell walls. J. Chem. Soc. 4344–4354. https://doi.org/10.1039/JR9580004344
- Rajagopal M., Walker S. (2017) Envelope structures of gram-positive bacteria. Curr. Top. Microbiol. Immunol. 404, 1–44. https://doi.org/10.1007/82_2015_5021
- Baddiley J. (1972) Teichoic acids in cell walls and membranes of bacteria. Essays Biochem. 8, 35–77.
- Naumova I.B. (1988) The teichoic acids of actinomycetes. Microbiol. Sci. 5(9), 275–279.
- Fischer W. (1988) Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29, 233–302. https://doi.org/10.1016/s0065-2911(08)60349-5
- Pasquina L.W., Santa Maria J.P., Walker S. (2013) Teichoic acid biosynthesis as an antibiotic target. Curr. Opin. Microbiol. 16(5), 531–537. https://doi.org/10.1016/j.mib.2013.06.014
- Потехина Н.В. (2006) Тейхоевые кислоты актиномицетов и других грамположительных бактерий. Успехи биол. химии. 46, 225–278.
- Браун Э. Д., Флайгейр Д., Хазенбос В., Лехар С.М., Мариатхасан С., Морисаки Д.Х., Пиллоу Т.Х., Стабен Л., Вандлен Р., Коэфоэд К., Страндх М., Андерсен П.С. (2019) Антитела против стеночной тейхоевой кислоты и их конъюгаты. Патент РФ RU 2687044 C2. https://patents.google.com/patent/RU2687044C2/ru
- Mann P.A., Müller A., Wolff K.A., Fischmann T., Wang H., Reed P., Roemer T. (2016). Chemical genetic analysis and functional characterization of staphylococcal wall teichoic acid 2-epimerases reveals unconventional antibiotic drug targets. PLoS Pathogens. 12(5), e1005585. https://doi.org/10.1371/journal.ppat.1005585
- Swoboda J.G., Meredith T.C., Campbell J., Brown S., Suzuki T., Bollenbach T., Malhowski A.J., Kishony R., Gilmore M.S., Walker S. (2009) Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem. Biol. 4(10), 875–883. https://doi.org/10.1021/cb900151k
- Lee S.H., Wang H., Labroli M., Koseoglu S., Zuck P., Mayhood T., Gill C., Mann P., Sher X., Ha S., Yang S.W., Mandal M., Yang C., Liang L., Tan Z., Tawa P., Hou Y., Kuvelkar R., DeVito K., Wen X., Xiao J., Batchlett M., Balibar C.J., Liu J., Xiao J., Murgolo N., Garlisi C.G., Sheth P.R., Flattery A., Su J., Tan C., Roemer T. (2016) TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci. Transl. Med. 8(329), 329–332. https://doi.org/10.1126/scitranslmed.aad7364
- Rahman O., Dover L.G., Sutcliffe I.C. (2009) Lipoteichoic acid biosynthesis: two steps forwards, one step sideways? Trends Microbiol. 17(6), 219–225. https://doi.org/10.1016/j.tim.2009.03.003
- Brade L., Brade H., Fischer W.A. (1990) 28 kDa protein of normal mouse serum binds lipopolysaccharides of gram-negative and lipoteichoic acids of gram-positive bacteria. Microb. Pathog. 9(5), 355–362. https://doi.org/10.1016/0882-4010(90)90069-3
- Shiraishi T., Matsuzaki C., Chiou T.Y., Kumeta H., Kawada M., Yamamoto K., Takahashi T., Yokota S.I. (2024) Lipoteichoic acid composed of poly-glycerolphosphate containing l-lysine and involved in immunoglobulin A-inducing activity in Apilactobacillus genus. Int. J. Biol. Macromol. 271(Pt 1), 132540. https://doi.org/10.1016/j.ijbiomac.2024.132540
- Ryu Y.H., Baik J.E., Yang J.S., Kang S.S., Im J., Yun C.H., Kim D.W., Lee K., Chung D.K., Ju H.R., Han S.H. (2009) Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int. Immunopharmacol. 9(1), 127–133. https://doi.org/10.1016/j.intimp.2008.10.014
- Fischer W. (1988) Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29, 233–302. https://doi.org/10.1016/s0065-2911(08)60349-5
- Fischer W. (1990) Bacterial phosphoglycolipids and lipoteichoic acids. In: Handbook of Lipid Research. Ed. Kates M. New York: Plenum Press, V. 6. pp. 123–234.
- Fischer W. (1994) Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med. Microbiol. Immunol. 183(2), 61–76. https://doi.org/10.1007/BF00277157
- Glaser L., Lindsay B. (1974) The synthesis of lipoteichoic acid carrier. Biochem. Biophys. Res. Commun. 59(3), 1131–1136. https://doi.org/10.1016/s0006-291x(74)80096-3
- Koch H.U., Haas R., Fischer W. (1984) The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur. J. Biochem. 138(2), 357–363. https://doi.org/0.1111/j.1432-1033.1984.tb07923.x
- Koch H.U., Taron D.J., Childs W.C. III, Neuhaus F.C. (1983) Biosynthesis of D-alanyl-lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation. J. Bacteriol. 154(3), 1110–1116. https://doi.org/10.1128/jb.154.3.1110-1116.1983
- Gründling A., Schneewind O. (2007) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J. Bacteriol. 189(6), 2521–2530. https://doi.org/10.1128/JB.01683-06
- Bhavsar A.P., Brown E.D. (2006) Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigm. Mol. Microbiol. 60(5), 1077–1090. https://doi.org/10.1111/j.1365-2958.2006.05169.x
- Damjanovic M., Kharat A.S., Eberhardt A., Tomasz A., Vollmer W. (2007) The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J. Bacteriol. 189(19), 7105–7111. https://doi.org/10.1128/JB.00681-07
- Ruiz N. (2008) Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl. Acad. Sci. USA. 105(40), 15553–15557. https://doi.org/10.1073/pnas.0808352105
- Jerga A., Lu Y.J., Schujman G.E., de Mendoza D., Rock C.O. (2007) Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis. J. Biol. Chem. 282(30), 21738–21745. https://doi.org/10.1074/jbc.M703536200
- Kiriukhin M.Y., Debabov D.V., Shinabarger D.L., Neuhaus F.C. (2001) Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J. Bacteriol. 183(11), 3506–3514. https://doi.org/10.1128/JB.183.11.3506-3514.2001
- Doran K.S., Engelson E.J., Khosravi A., Maisey H.C., Fedtke I., Equils O., Michelsen K.S., Arditi M., Peschel A., Nizet V. (2005) Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J. Clin. Invest. 115(9), 2499–2507. https://doi.org/10.1172/JCI23829
- Fedtke I., Mader D., Kohler T., Moll H., Nicholson G., Biswas R., Henseler K., Götz F., Zähringer U., Peschel A. (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol. Microbiol. 65(4), 1078–1091. https://doi.org/10.1111/j.1365-2958.2007.05854.x
- Richter S.G., Elli D., Kim H.K., Hendrickx A.P., Sorg J.A., Schneewind O., Missiakas D. (2013) Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proc. Natl. Acad. Sci USA. 110(9), 3531–3536. https://doi.org/10.1073/pnas.1217337110
- Ton-That H., Liu G., Mazmanian S.K., Faull K.F., Schneewind O. (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA. 96(22), 12424–12429. https://doi.org/10.1073/pnas.96.22.12424
- Paganelli F., van de Kamer T., Brouwer E.C., Leavis H.L., Woodford N., Bonten M.J., Willems R.J., Hendrickx A.P. (2017) Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium. Int. J. Antimicrob. Agents. 49(3), 355–363. https://doi.org/10.1016/j.ijantimicag.2016.12.002
- Wattam A.R., Abraham D., Dalay O., Disz T.L., Driscoll T., Gabbard J.L., Gillespie J., Gough R., Hix D., Kenyon R., Machi D., Mao C., Nordberg E.K., Olson R., Overbeek R., Pusch G.D., Shukla M., Schulman J., Stevens R.L., Sullivan D.E., Vonstein V., Warren A., Will R. Wilson M.J., Yoo H.S., Zhang C., Zhang Y., Sobral B.W. (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucl. Acids Res. 42 (Database issue), D581–591. https://doi.org/10.1093/nar/gkt1099
- Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
- Hendrickx A.P., Top J., Bayjanov J.R., Kemperman H., Rogers M.R., Paganelli F.L., Bonten M.J., Willems R.J. (2015) Antibiotic-driven dysbiosis mediates intraluminal agglutination and alternative segregation of Enterococcus faecium from the intestinal epithelium. mBio. 6(6), e01346-15. https://doi.org/10.1128/mBio.01346-15
- Sabnis A., Edwards A.M. (2023) Lipopolysaccharide as an antibiotic target. Biochim. Biophys. Acta Mol. Cell Res. 1870(7), 119507. https://doi.org/10.1016/j.bbamcr.2023.119507
- Whitfield C., Trent M.S. (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83, 99–128. https://doi.org/10.1146/annurev-biochem-060713-035600
- Parker C.T., Pradel E., Schnaitman C.A. (1992) Identification and sequences of the lipopolysaccharide core biosynthetic genes rfaQ, rfaP, and rfaG of Escherichia coli K12. J. Bacteriol. 174(3), 930–934. https://doi.org/10.1128/jb.174.3.930-934.1992
- Takeuchi Y., Nikaido H. (1981) Persistence of segregated phospholipid domains in phospholipid–lipopolysaccharide mixed bilayers: studies with spin-labeled phospholipids. Biochemistry. 20(3), 523–529. https://doi.org/10.1021/bi00506a013
- Delucia A.M., Six D.A., Caughlan R.E., Gee P., Hunt I., Lam J.S., Dean C.R. (2011) Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1. mBio. 2(4), e00142-11. https://doi.org/10.1128/mBio.00142-11
- Srinivas N., Jetter P., Ueberbacher B.J., Werneburg M., Zerbe K., Steinmann J., Van der Meijden B., Bernardini F., Lederer A., Dias R.L., Misson P.E., Henze H., Zumbrunn J., Gombert F.O., Obrecht D., Hunziker P., Schauer S., Ziegler U., Käch A., Eberl L., Riedel K., DeMarco S.J., Robinson J.A. (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 327(5968), 1010–1013. https://doi.org/10.1126/science.1182749
- Moura E.C.C.M., Baeta T., Romanelli A., Laguri C., Martorana A.M., Erba E., Simorre J.P., Sperandeo P., Polissi A. (2020) Thanatin impairs lipopolysaccharide transport complex assembly by targeting LptC-LptA interaction and decreasing LptA stability. Front. Microbiol. 11, 909. https://doi.org/10.3389/fmicb.2020.00909
- Raetz C.R., Whitfield C. (2002) Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
- Sperandeo P., Martorana A.M., Zaccaria M., Polissi A. (2023).Targeting the LPS export pathway for the development of novel therapeutics. Biochim. Biophys. Acta Mol. Cell Res. 1870(2), 119406. https://doi.org/10.1016/j.bbamcr.2022.119406
- Onishi H.R., Pelak B.A., Gerckens L.S., Silver L.L., Kahan F.M., Chen M.H., Patchett A.A., Galloway S.M., Hyland S.A., Anderson M.S., Raetz C.R. (1996) Antibacterial agents that inhibit lipid A biosynthesis. Science. 274(5289), 980–982. https://doi.org/10.1126/science.274.5289.980
- Zhou P., Barb A. (2008) Mechanism and inhibition of LpxC: a nessential zinc-dependent deacetylase of bacterial lipid a synthesis. Curr. Pharm. Biotechnol. 9(1), 9–15. https://doi.org/10.2174/138920108783497668
- Jenkins R.J., Dotson G.D. (2012) Dual targeting antibacterial peptide inhibitor of early lipid a biosynthesis. ACS Chem. Biol. 7(7), 1170–1177. https://doi.org/10.1021/cb300094a
- Huseby D.L., Cao S., Zamaratski E., Sooriyaarachchi S., Ahmad S., Bergfors T., Krasnova L., Pelss J., Ikaunieks M., Loza E., Katkevics M., Bobileva O., Cirule H., Gukalova B., Grinberga S., Backlund M., Simoff I., Leber A.T., Berruga-Fernández T., Antonov D., Konda V.R., Lindström S., Olanders G., Brandt P., Baranczewski P., Vingsbo Lundberg C., Liepinsh E., Suna E., Jones T.A., Mowbray S.L., Hughes D., Karlén A. (2024) Antibiotic class with potent in vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria. Proc. Natl. Acad. Sci. USA. 121(15), e2317274121. https://doi.org/10.1073/pnas.2317274121
- Birck M.R., Holler T.P., Woodard R.W. (2000) Identification of a slow tight-binding inhibitor of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase J. Am. Chem. Soc. 122(38), 9334–9335. https://doi.org/10.1021/ja002142z
- Zampaloni C., Mattei P., Bleicher K., Winther L., Thäte C., Bucher C., Adam J.M., Alanine A., Amrein K.E., Baidin V., Bieniossek C., Bissantz C., Boess F., Cantrill C., Clairfeuille T., Dey F., Di Giorgio P., du Castel P., Dylus D., Dzygiel P., Felici A., García-Alcalde F., Haldimann A., Leipner M., Leyn S., Louvel S., Misson P., Osterman A., Pahil K., Rigo S., Schäublin A., Scharf S., Schmitz P., Stoll T., Trauner A., Zoffmann S., Kahne D., Young J.A.T., Lobritz M.A., Bradley K.A. (2024) A novel antibiotic class targeting the lipopolysaccharide transporter. Nature. 625(7995), 566–571. https://doi.org/10.1038/s41586-023-06873-0
- Pahil K.S., Gilman M.S.A., Baidin V., Clairfeuille T., Mattei P., Bieniossek C., Dey F., Muri D., Baettig R., Lobritz M., Bradley K., Kruse A.C., Kahne D. (2024) A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature. 625(7995), 572–577. https://doi.org/10.1038/s41586-023-06799-7
- Tang X., Chang S., Luo Q., Zhang Z., Qiao W., Xu C., Zhang C., Niu Y., Yang W., Wang T., Zhang Z., Zhu X., Wei X., Dong C., Zhang X., Dong H. (2019) Cryo-EM structures of lipopolysaccharide transporter LptB2FGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism. Nat. Commun. 10(1), 4175. https://doi.org/10.1038/s41467-019-11977-1
- Romano K.P., Hung D.T. (2023) Targeting LPS biosynthesis and transport in gram-negative bacteria in the era of multi-drug resistance. Biochim. Biophys. Acta Mol. Cell. Res. 1870(3), 119407. https://doi.org/10.1016/j.bbamcr.2022.119407
- Mohapatra S.S., Dwibedy S.K., Padhy I. (2021) Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J. Biosci. 46(3), 85. https://doi.org/10.1007/s12038-021-00209-8
- Khadka N.K., Aryal C.M., Pan J. (2018) Lipopolysaccharide-dependent membrane permeation and lipid clustering caused by cyclic lipopeptide colistin. ACS Omega. 3(12), 17828–17834. https://doi.org/10.1021/acsomega.8b02260
- Garcia-Quintanilla M., Caro-Vega J.M., Pulido M.R., Moreno-Martinez P., Pachon J., McConnell M.J. (2016) Inhibition of Lpx C increases antibiotic susceptibility in Acinetobacter baumannii. Antimicrob. Agents Chemother. 60(8), 5076–5079. https://doi.org/10.1128/AAC.00407-16
- Sabnis A., Hagart K.L., Klöckner A., Becce M., Evans L.E., Furniss R.C.D., Mavridou D.A., Murphy R., Stevens M.M., Davies J.C., Larrouy-Maumus G.J., Clarke T.B., Edwards A.M. (2021). Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. eLife. 10, e65836. https://doi.org/10.7554/eLife.65836
- Haltia T., Freire E. (1995) Forces and factors that contribute to the structural stability of membrane proteins. Biochim. Biophys. Acta. 1241(2), 295–322. https://doi.org/10.1016/0304-4157(94)00161-6
- Koebnik R., Locher K.P., van Gelder P. (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37(2), 239–253. https://doi.org/10.1046/j.1365-2958.2000.01983.x
- Cowan S.W., Garavito R.M., Jansonius J.N., Jenkins J.A., Karlsson R., König N., Pai E.F., Pauptit R.A., Rizkallah P.J., Rosenbusch J.P., Rummel G., Schirmer T. (1995) The structure of OmpF porin in a tetragonal crystal form. Structure. 3(10), 1041–1050. https://doi.org/10.1016/s0969-2126(01)00240-4
- Acosta-Gutiérrez S., Bodrenko I., Scorciapino M.A., Ceccarelli M. (2016) Macroscopic electric field inside water-filled biological nanopores. Phys. Chem. Chem. Phys. 18(13), 8855–8864. https://doi.org/10.1039/C5CP07902K
- Im W., Roux B. (2002) Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322(4), 851–869. https://doi.org/10.1016/s0022-2836(02)00778-7
- Ghai I, Ghai S. (2017) Exploring bacterial outer membrane barrier to combat bad bugs. Infect. Drug Resist. 10, 261–273. https://doi.org/10.2147/IDR.S144299
- Prajapati J.D., Kleinekathöfer U., Winterhalter M. (2021). How to enter a bacterium: bacterial porins and the permeation of antibiotics. Chem. Rev. 121, 5158–5192. https://doi.org/10.1021/acs.chemrev.0c01213
- Новикова О.Д., Соловьева Т.Ф. (2009) Порообразующие белки наружной мембраны некоторых грамотрицательных бактерий. Структура и свойства. Биол. Мембраны. 26(1), 6‒20.
- Yoshimura F., Nikaido H. (1985) Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 27(1), 84–92. https://doi.org/10.1128/AAC.27.1.84
- Pagès J.M., James C.E., Winterhalter M. (2008) The porin and the permeating antibiotic: a selective diffusion barrier in gram-negative bacteria. Nat. Rev. Microbiol. 6(12), 893–903. https://doi.org/10.1038/nrmicro1994
- Ruggiu F., Yang S., Simmons R.L., Casarez A., Jones A.K., Li C., Jansen J.M., Moser H.E., Dean C.R., Reck F., Mika L. (2019) Size matters and how you measure it: a gram-negative antibacterial example exceeding typical molecular weight limits. ACS Infect. 5, 1688–1692. https://doi.org/10.1021/acsinfecdis.9b00256
- Choi U., Lee C.R. (2019) Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front. Microbiol. 10, 953. https://doi.org/10.3389/fmicb.2019.00953
- James C.E., Mahendran K.R., Molitor A., Bolla J.M., Bessonov A.N., Winterhalter M., Pagès J.M. (2009) How beta-lactam antibiotics enter bacteria: a dialogue with the porins. PLoS One. 4(5), e5453. https://doi.org/10.1371/journal.pone.0005453
- Acosta-Gutiérrez S., Ferrara L., Pathania M., Masi M., Wang J., Bodrenko I., Zahn M., Winterhalter M., Stavenger R.A., Pagès J.M., Naismith J.H., van den Berg B., Page M.G.P., Ceccarelli M. (2018) Getting drugs into gram-negative bacteria: rational rules for permeation through general porins. ACS Infect. Dis. 4(10), 1487–1498. https://doi.org/10.1021/acsinfecdis.8b00108
- Ziervogel B.K., Roux B. (2013) The binding of antibiotics in OmpF porin. Structure. 21(1), 76–87. https://doi.org/10.1016/j.str.2012.10.014
- Sugawara E., Kojima S., Nikaido H. (2016) Klebsiella pneumoniae major porins OmpK35 and OmpK36 allow more efficient diffusion of β-lactams than their Escherichia coli homologs OmpF and OmpC. J. Bacteriol. 198(23), 3200–3208. https://doi.org/10.1128/JB.00590-16
- Moya-Torres A., Mulvey M.R., Kumar A., Oresnik I.J., Brassinga A.K.C. (2014) The lack of OmpF, but not OmpC, contributes to increased antibiotic resistance in Serratia marcescens. Microbiology (Reading). 160(9), 1882–1892. https://doi.org/10.1099/mic.0.081166-0
- Okamoto K., Gotoh N., Nishino T. (2001) Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Antimicrob. Agents Chemother. 45(7), 1964–1971. https://doi.org/10.1128/AAC.45.7.1964-1971.2001
- Bornet C., Davin-Regli A., Bosi C., Pages J.M., Bollet C. (2000) Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J. Clin. Microbiol. 38(3), 1048–1052. https://doi.org/10.1128/JCM.38.3.1048-1052.2000
- Mortimer P.G., Piddock L.J. (1993) The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J. Antimicrob. Chemother. 32(2), 195–213. https://doi.org/10.1093/jac/32.2.195
- Vergalli J., Atzori A., Pajovic J., Dumont E., Malloci G., Masi M., Vargiu A.V., Winterhalter M., Réfrégiers M., Ruggerone P., Pagès J.M. (2020) The challenge of intracellular antibiotic accumulation, a function of fluoroquinolone influx versus bacterial efflux. Commun. Biol. 3(1), 198. https://doi.org/10.1038/s42003-020-0929-x
- Gauba A., Rahman K.M. (2023) Evaluation of antibiotic resistance mechanisms in gram-negative bacteria. Antibiotics (Basel). 12(11), 1590. https://doi.org/10.3390/antibiotics12111590
- Lou H., Chen M., Black S.S., Bushell S.R., Ceccarelli M., Mach T., Beis K., Low A.S., Bamford V.A., Booth I.R., Bayley H., Naismith J.H. (2011) Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multidrug resistant E. coli. PLoS One. 6(10), e25825. https://doi.org/10.1371/journal.pone.0025825
- Bredin J., Saint N., Malléa M., Dé E., Molle G., Pagès J.M., Simonet V. (2002) Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem. J. 363(3), 521–528. https://doi.org/10.1042/0264-6021:3630521
- Cama J., Henney A.M., Winterhalter M. (2019) Breaching the barrier: quantifying antibiotic permeability across gram-negative bacterial membranes. J. Mol. Biol. 431(18), 3531–3546. https://doi.org/10.1016/j.jmb.2019.03.031
- Mahendran K.R., Hajjar E., Mach T., Lovelle M., Kumar A., Sousa I., Spiga E., Weingart H., Gameiro P., Winterhalter M., Ceccarelli M. (2010) Molecular basis of enrofloxacin translocation through OmpF, an outer membrane channel of Escherichia coli – When binding does not imply translocation. J. Phys. Chem. B. 114(15), 5170–5179. https://doi.org/10.1021/jp911485k
- Mach T., Neves P., Spiga E., Weingart H., Winterhalter M., Ruggerone P., Ceccarelli M., Gameiro P. (2008) Facilitated permeation of antibiotics across membrane channels - Interaction of the quinolone moxifloxacin with the OmpF channel. J. Am. Chem. Soc. 130(40), 13301–13309. https://doi.org/10.1021/ja803188c
- Bajaj H., Acosta-Gutierrez S., Bodrenko I., Malloci G., Scorciapino M.A., Winterhalter M., Ceccarelli M. (2017) Bacterial outer membrane porins as electrostatic nanosieves: exploring transport rules of small polar molecules. ACS Nano. 11(6), 5465–5473. https://doi.org/10.1021/acsnano.6b08613
- Danelon C., Nestorovich E.M., Winterhalter M., Ceccarelli M., Bezrukov S.M. (2006) Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys. J. 90(5), 1617–1627. https://doi.org/10.1529/biophysj.105.075192
- Чистюлин Д.К., Зелепуга Е.А., Новиков В.Л., Баланева Н.Н., Глазунов В.П., Чингизова Е.А., Хоменко В.А., Новикова О.Д. (2024) Молекулярная модель транслокации норфлоксацина через канал OmpF порина Yersinia pseudotuberculosis Биол. Мембраны. 41(1), 36–57. https://doi.org/10.31857/S0233475524010032
- Delcour A.H. (2013) Electrophysiology of bacteria. Annu. Rev. Microbiol. 67, 179–197. https://doi.org/10.1146/annurev-micro-092412-155637
- Grewer C., Gameiro A., Mager T., Fendler K. (2013) Electrophysiological characterization of membrane transport proteins. Annu. Rev. Biophys. 42, 95–120. https://doi.org/10.1146/annurev-biophys-083012-130312
- Danilchanka O., Pavlenok M., Niederweis M. (2008) Role of porins for uptake of antibiotics by Mycobacterium smegmatis. Antimicrob. Agents Chemother. 52(9), 3127–3134. https://doi.org/10.1128/AAC.00239-08
- Simonet V., Malléa M., Pagès J.M. (2000) Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob. Agents Chemother. 44(2), 311–315. https://doi.org/10.1128/AAC.44.2.311-315.2000
- Dé E., Baslé A., Jaquinod M., Saint N., Malléa M., Molle G., Pagès J.M. (2001) A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol. Microbiol. 41(1), 189–198. https://doi.org/10.1046/j.1365-2958.2001.02501.x
- Gill M.J., Simjee S., Al-Hattawi K., Robertson B.D., Easmon C.S., Ison C.A. (1998) Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob. Agents Chemother. 42(11), 2799–2803. https://doi.org/10.1128/AAC.42.11.2799
- Huang W., Zhang Q., Li W., Chen Y., Shu C., Li Q., Zhou J., Ye C., Bai H., Sun W., Yang X., Ma Y. (2019) Anti-outer membrane vesicle antibodies increase antibiotic sensitivity of pan-drug-resistant Acinetobacter baumannii. Front. Microbiol. 10, 1379. https://doi.org/10.3389/fmicb.2019.01379
- Rafailidis P.I., Ioannidou E.N., Falagas M.E. (2007) Ampicillin/sulbactam: current status in severe bacterial infections. Drugs. 67(13), 1829–1849. https://doi.org/10.2165/00003495-200767130-00003
Supplementary files
