SPECIES DIVERSITY AND ENZYMATIC ACTIVITY OF MICROFUNGI ISOLATED FROM DRIFTWOOD AT THE NOVAYA ZEMLYA ARCHIPELAGO

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Driftwood samples collected during the summer of 2021–2022 from the coastal areas of the Novaya Zemlya archipelago were analyzed to study the diversity of microfungi on coniferous wood. The research identified 26 microfungal species, primarily from the Ascomycota division. Among these, 10 species were isolated from the northern islands, while 22 species came from the southern islands. Fungi from the Mucoromycota and Basidiomycota divisions were found in exceedingly low numbers. Enzyme activity analysis revealed ligninolytic (oxidative) activity in 34% of the strains examined, amylolytic activity in 57%, and cellulolytic activity in an impressive 92%. A group of psychrotrophic species exhibiting strong ligninolytic activity, alongside significant cellulolytic and amylolytic activity, was identified as being particularly adept at breaking down wood substrates in harsh Arctic conditions. Notably, enzymatic activity in many cases was observed to vary depending on the strain.

About the authors

I. G. Pankova

Botanical Institute of Russian Academy of Sciences

Email: inna2008@nextmail.ru
197022 St. Petersburg, Russia

I. Yu. Kirtsideli

Botanical Institute of Russian Academy of Sciences

Email: microfungi@mail.ru
197022 St. Petersburg, Russia

V. A. Iliushin

Botanical Institute of Russian Academy of Sciences

Email: ilva94@yandex.ru
197022 St. Petersburg, Russia

M. V. Gavrilo

Arctic and Antarctic Research Institute

Email: m_gavrilo@mail.ru
199397 St. Petersburg, Russia

A. E. Goncharov

Institute of Experimental Medicine

Email: phage1@yandex.ru
197136 St. Petersburg, Russia

D. Yu. Vlasov

Botanical Institute of Russian Academy of Sciences; Saint Petersburg State University

Email: dmitry.vlasov@mail.ru
197022 St. Petersburg, Russia; 199034 St. Petersburg, Russia

References

  1. Aleksandrova V. D. Geobotanical zoning of the Arctic and Antarctic. Nauka, Leningrad, 1977. (In Russ.).
  2. Almeida C., Eguereva E., Kehraus S. et al. Hydroxylated sclerosporin derivatives from the marine-derived fungus Cadophora malorum. J. Nat. Prod. 2010. V. 73 (3). P. 476– 478 https://doi.org/10.1021/np900608d
  3. Arenz B. E., Blanchette R. A. Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea region and McMurdo dry valleys. Soil Biol. Biochem. 2011. V. 43. P. 308–315. https://doi.org/10.1016/j.soilbio.2010.10.016
  4. Arenz B. E., Blanchette R. A., Farrell R. L. Fungal diversity in Antarctic soils. In: D. Cowan (ed.). Antarctic terrestrial microbiology: Physical and biological properties of Antarctic soils. Springer, 2014, pp. 35–53.
  5. Baldrian P., Valášková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Reviews. 2008. V. 32 (3). P. 501–521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
  6. Bhunjun C. S., Niskanen T., Suwannarach N. et al. The numbers of fungi: are the most speciose genera truly diverse? Fungal Diversity. 2022. V. 114. P. 387–462. https://doi.org/10.1007/s13225-022-00501-4
  7. Białkowska A. M., Szulczewska K. M., Krysiak J. et al. Genetic and biochemical characterization of yeasts isolated from Antarctic soil samples. Polar. Biol. 2017. V. 40. P. 1787–1803. https://doi.org/10.1007/s00300-017-2102-7
  8. Blanchette R. A., Held B. W., Jurgens J. et al. Fungi attacking historic wood of Fort Conger and the Peary Huts in the High Arctic. PLOS One. 2021. V. 16 (1). https://doi.org/10.1371/journal.pone.0246049
  9. Blanchette R., Held B., Hellman L. et al. Arctic driftwood reveals unexpectedly rich fungal diversity. Fungal Ecology. 2016. V. 23. P. 58–63. https://doi.org/10.1016/j.funeco.2016.06.001
  10. Blanchette R. A., Held B. W., Arenz B. E. et al. An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microb. Ecol. 2010. V. 60. P. 29–38. https://doi.org/10.1007/s00248-010-9664-z
  11. Blanchette R. A., Held B. W., Jurgens J. A. et al. Wood destroying soft rot fungi in the historic expedition huts of Antarctica. Appl. Environ. Microbiol. 2004. V. 70. P. 1328–1335. https://doi.org/10.1128/aem.70.3.1328-1335.2004
  12. Burgaud G., Le Calvez T., Arzur D. et al. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol. 2009. V. 11 (6). P. 1588–1600. https://doi.org/10.1111/j.1462-2920.2009.01886.x
  13. Connell L., Redman R., Craig S. et al. Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol. Biochem. 2006. V. 38. P. 3083–3094. https://doi.org/10.1016/j.soilbio.2006.02.016
  14. Dyke A. S., England J., Reimnitz E. et al. Changes in driftwood delivery to the Canadian Arctic Archipelago: the hypothesis of postglacial oscillations of the Transpolar Drift. Arctic. 1997. V. 50 (1). P. 1–16. https://doi.org/10.14430/arctic1086
  15. Eggertsson Ó. Driftwood as an indicator of relative changes in the influx of Arctic and Atlantic water into the coastal areas of Svalbard. Polar Res. 1994. V. 13. P. 209–218. https://doi.org/10.1111/j.1751-8369.1994.tb00450.x
  16. Flyen A. C., Thuestad A. E. A review of fungal decay in historic wooden structures in polar regions. Conservation and Management of Archaeological Sites. 2022. V. 24 (1–3). P. 3–35. https://doi.org/10.1080/13505033.2022.2156145
  17. Gams W. Phialophora and some similar morphologically little-differentiated anamorphs of divergent ascomycetes. Stud. Mycol. 2000. V. 45. P. 187–199.
  18. Goodell B., Xie X., Qian Y. et al. Carbon nanotubes produced from natural cellulosic materials. J. Nanosci. Nanotechnol. 2008. V. 8. P. 2472–2474. https://doi.org/10.1166/jnn.2008.235
  19. Grishchenko I. V. Climate. In: Novaya Zemlya Archipelago. Monograph. Paulsen, Moscow, 2009. (In Russ.).
  20. Gunde-Cimerman N., Oren A., Plemenitaš A. Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, 2005.
  21. Held B., Jurgens J., Duncan S. et al. Assessment of fungal diversity and deterioration in a wooden structure at New Harbor, Antarctica. Polar Biol. 2005. V. 29 P. 526–531. https://doi.org/10.1007/s00300-005-0084-3
  22. Held B. W., Blanchette R. A. Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biol. 2017. V. 121 (2). P. 145–157. https://doi.org/10.1016/j.funbio.2016.11.009
  23. Hellmann L., Tegel W., Eggertsson Ó. et al. Tracing the origin of Arctic driftwood. J. Geophysical Research: Biogeosciences. 2013. V. 118 (1). P. 68–76. https://doi.org/10.1002/jgrg.20022
  24. Hellmann L., Tegel W., Kirdyanov A. V. et al. Timber logging in central Siberia is the main source for recent Arctic driftwood. Arctic Antarct. Alpine Res. 2015. V. 47. P. 449–460. https://doi.org/10.1657/AAAR0014-063
  25. Hellmann L., Agafonov L., Churakova O. et al. Regional coherency of boreal forest growth defines Arctic driftwood provenancing. Dendrochronologia. 2016a. V. 39. P. 3–9. https://doi.org/10.1016/j.dendro.2015.12.010
  26. Hellmann L., Agafonov L., Ljungqvist F. C. et al. Diverse growth trends and climate responses across Eurasia’s boreal forest. Environ. Res. Lett. 2016b. V. 11 (7). Art. 074021. https://doi.org/10.1088/1748-9326/11/7/074021
  27. Hellmann L., Kirdyanov A. V., Büntgen U. Effects of boreal timber rafting on the composition of Arctic driftwood. Forests. 2016c. V. 7 (11) Art. 257. https://doi.org/10.3390/f7110257
  28. Hellmann L., Tegel W., Geyer J. et al. Dendro-provenancing of Arctic driftwood. Quatern. Sci. Reviews. 2017. V. 162. P. 1–11. https://doi.org/10.1016/j.quascirev.2017.02.025
  29. Iliushin V. A., Kirtsideli I. Yu., Vlasov D. Yu. Diversity of culturable microfungi of coal mine spoil tips in Svalbard. Polar Sci. 2022. V. 32. Art. 100793. https://doi.org/10.1016/j.polar.2022.100793
  30. Iliushin V. A., Kirtsideli I. Yu. Pseudoxenochalara gen. nov. (Dermateaceae, Helotiales), with P. grumantiana sp. nov. from the Svalbard archipelago. Botanica Serbica. 2023. V. 47 (1). P. 55–63. https://doi.org/10.2298/BOTSERB2301055I
  31. Iliushin V. A., Kirtsideli I. Yu., Pankova I. G. Cadophora arctica (Ploettnerulaceae, Helotiales), a new species from Franz Josef Land. Phytotaxa. 2024. V. 669 (1). P. 1–12. https://doi.org/10.11646/phytotaxa.669.1.1
  32. Index Fungorum. CABI Bioscience, 2025. http://www.indexfungorum.org. Accessed 28.03.2025.
  33. Ivashenko V. G., Shipilova N. P., Kirtsideli I. Yu. Ecological monitoring of pathogens Fusarium seed blight of grain crops in the northwest of Russia. Mikologiya i fiopatologiya. 1997. V. 31 (2). P. 64–69. (In Russ.).
  34. Karvinen S., Valkky E., Torniainen T. et al. Northwest Russian forest sector in a Nutshell. Working Papers of Finnish Forest Research Institute, 2006.
  35. Kirtsideli I. Yu. Microfungi from soils оf Heiss Island (Franz Joseph Land). Novosti sistematiki nizshikh rasteniy. 2015. V. 49. P. 151–160. (In Russ.).
  36. Kirtsideli I. Yu., Vlasov D. Yu., Abakumov E. V. et al. Diversity and enzyme activity of microfungi from antarctic soils. Mikologiya i fitopatologiya. 2010. V. 44 (5). P. 387–397. (In Russ.).
  37. Kirtsideli I., Vlasov D., Barantsevich E. et al. Distribution of terrigenous microfungi in Arctic Seas. Mikologiya i fitopatologiya. 2012. V. 46 (5). P. 306–310. (In Russ.).
  38. Kirtsideli I. Yu., Vlasov D. Yu., Barantsevich E. P. et al. Microfungi from soil оf polar desert at Izvestia island (in Kara Sea). Mikologiya i fitopatologiya. 2014. V. 48 (3). P. 365–371. (In Russ.).
  39. Kirtsideli I. Yu., Abakumov E. V., Teshebaev Sh.B. et al. Microbial communities in regions of arctic settlements. Gigiena i sanitariya. 2016. V. 95 (10). P. 923–929. (In Russ.).
  40. Kirtsideli I. Yu., Vlasov D. Yu., Novozhilov Yu.K. et al. Airborne fungi in arctic settlement Tiksi (Russian Arctic, coast of the Laptev Sea). Czech Polar Reports. 2017. V. 7 (2). P. 300–310. https://doi.org/10.5817/CPR2017-2-29
  41. Kirtsideli I. Yu., Vlasov D. Yu., Novozhilov Yu.K. et al. Assessment of anthropogenic influence on Antarctic mycobiota in areas of Russian polar stations. Contemporary Problems of Ecology. 2018a. V. 11 (5). Р. 449–457. https://doi.org/10.1134/S1995425518050074
  42. Kirtsideli I. Yu., Vlasov D. Yu., Zelenskaya M. S. et al. Anthropogenic modification of mycobiota on Vize Island (in the Kara Sea). Gigiena i sanitariya. 2018b. V. 97 (11). P. 1058–1063. (In Russ.). https://doi.org/10.18821/0016-9900-2018-97-11-1058-63
  43. Kirtsideli I. Yu., Vlasov D. Yu., Zelenskaya M. S. et al. Assessment of anthropogenic invasion of microfungi in Arctic ecosystems (exemplified by Spitsbergen archipelago). Gigiena i sanitariya. 2020. V. 99 (2). P. 145–151. (In Russ.). https://doi.org/10.33029/0016-9900-2020-99-2-145-151
  44. Kirtsideli I. Yu., Lukina E. G., Iliushin V. A. et al. Diversity of microfungi on driftwood in the coastal zone of the greenland sea (Svalbard Archipelago). Mikologiya i fitopatologiya. 2021. V. 55 (3). P. 178–188. (In Russ.). https://doi.org/10.31857/s0026364821030053
  45. Kirtsideli I. Yu., Ilyushin V. A., Vlasov D. Yu. et al. Microfungi in the soils of Chernevaya Taiga of Western Siberia. Mikologiya i fitopatologiya. 2022. V. 56 (2). P. 86–95. (In Russ.). https://doi.org/10.31857/S0026364822020076
  46. Kolosova M. I., Solovyova N. G. The main anatomical features of the wood of deciduous trees and shrubs. SPb., 2013. (In Russ.).
  47. Krishnan A., Convey P., Gonzalez M. Effects of temperature on extracellular hydrolase enzymes from soil microfungi. Polar Biol. 2018. V. 41. P. 537–551. https://doi.org/doi.org/10.1007/s00300-017-2215-z
  48. Li T., Im J., Lee J. Genetic diversity of Epicoccum nigrum and its effects on Fusarium graminearum. Mycobiology. 2022. V. 50 (6). V. 457–466. https://doi.org/10.1080/12298093.2022.2148394
  49. Linderholm H. W., Gunnarson B. E., Fuentes M. et al. The origin of driftwood on eastern and south-western Svalbard. Polar Sci. 2021. V. 29. Art. 100658. https://doi.org/10.1016/j.polar.2021.100658
  50. Ludley K. E., Robinson C. H. Decomposer Basidiomycota in Arctic and Antarctic ecosystems. Soil Biol. Biochem. 2008. V. 40. P. 11–29. https://doi.org/10.1016/j.soilbio.2007.07.023
  51. Malosso E., Waite I. S., English L. et al. Fungal diversity in maritime Antarctic soils determined using a combination of culture isolation, molecular fingerprinting and cloning techniques. Polar Biol. 2006. V. 29. P. 552–561. https://doi.org/10.1007/s00300-005-0088-z
  52. Molodnyakov S. A. Climatic features of the Novaya Zemlya region. In: Novaya Zemlya. Nature. History. Archaeology. Culture. Proceedings of the Marine Arctic Complex Expedition (MACE) edited by P. V. Boyarovsky. Book 1. D. S. Likhachev Russian Research Institute of Cultural and Natural Heritage, Moscow, 1998, pp. 101–116.
  53. Nikitin D. A., Semenov M. V. Characterization of Franz Josef Land soil mycobiota by microbiological palating and realtime PCR. Microbiology. 2022. V. 91 (1). P. 56–66. https://doi.org/10.1134/S002626172201009х
  54. Palmero D., Iglesias C., de Cara M. et al. Species of Fusarium isolated from river and sea water of Southeastern Spain and Pathogenicity on four plant species. Plant Disease. 2009. V. 93 (4). P. 377–385. https://doi.org/10.1094/pdis-93-4-0377
  55. Pankova I., Kirtsideli I., Iliushin V. et al. Diversity of microfungi on wood of the coastal Zone of Heiss Island (Franz Joseph Land Archipelago). Mikologiya i fitopatologiya. 2023. V. 57 (3). P. 184–197. https://doi.org/10.31857/S0026364823030091
  56. Pedersen N. B., Matthiesen H., Blanchette R. A. et al. Fungal attack on archaeological wooden artifacts in the Arctic Implications in a changing climate. Sci. Rep. 2020. V. 10. Art. 14577. https://doi.org/10.1038/s41598-020-71518-5
  57. Perini L., Andrejašič K., Gostinčar C. et al. Greenland and Svalbard glaciers host unknown basidiomycetes: the yeast Camptobasidium arcticum sp. nov. and the dimorphic Psychromyces glacialis gen. and sp. nov. Int. J. Syst. Evol. Microbiol. 2021. V. 71 (2). Art. 004655. https://doi.org/10.1099/ijsem.0.004655
  58. Peterson B. J., Holmes R. M., McClelland J.W. et al. Increasing river discharge to the Arctic Ocean. Science. 2002. V. 298 (5601). P. 2171–2173. https://doi.org/10.1126/science.1077445
  59. Rytioja J., Hildén K., Yuzon J. et al. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol. Mol. Biol. Rev. 2014. V. 78 (4). P. 614–649. https://doi.org/10.1128/mmbr.00035-14
  60. Shakhova N. V., Volobuev S. V. Culture characteristics and enzymatic activity of Sarcodontia crocea (Basidiomycota) strains collected from the Central Russian Upland. Mikologiya i fitopatologiya. 2020. V. 54 (6). P. 446–451. https://doi.org/10.31857/S0026364820060100
  61. Tosi S., Casado B., Gerdol R. et al. Fungi isolated from Antarctic mosses. Polar Biol. 2002. V. 25. P. 262–268. https://doi.org/10.1007/s00300-001-0337-8
  62. Tsuji M., Tanabe Y., Vincent W. F. et al. Mrakia arctica sp. nov., a new psychrophilic yeast isolated from an ice island in the Canadian High Arctic. Mycoscience. 2018. V. 59 (1). P. 54–58. https://doi.org/10.1016/j.myc.2017.08.006
  63. Tsuji M., Tanabe Y., Vincent W. F. et al. Vishniacozyma ellesmerensis sp. nov., a psychrophilic yeast isolated from a retreating glacier in the Canadian High Arctic. Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 696–700. https://doi.org/10.1099/ijsem.0.003206
  64. Tsuji M., Tsujimoto M., Imura S. Cystobasidium tubakii and Cystobasidium ongulense, new basidiomycetous yeast species isolated from East Ongul Island, East Antarctica. Mycoscience. 2017. V. 58. P. 103–110. https://doi.org/10.1016/j.myc.2016.11.002
  65. Vlasov D. Yu., Teshebaev Sh.B., Zelenskaya M. S. et al. Mycological lesions of materials in premises as a risk factor for the health of polar explorers. Gigiena i sanitariya. 2019. V. 98 (1). P. 17–21. (In Russ.).
  66. Vlasov D. Yu., Kirtsideli I. Yu., Abakumov E. V. et al. Anthropogenic invasion of micromycetes to undisturbed ecosystems of the Larsemann Hills Oasis (East Antarctica). Russian J. Biological Invasions. 2020. V. 11 (3). P. 208–215. https://doi.org/10.1134/S2075111720030121
  67. Wiktor V., De Leo F., Urzi C. et al. Accelerated laboratory test to study fungal biodeterioration of cementitious matrix. Int. Biodeterior. Biodegr. 2009. V. 63. P. 1061–1065. https://doi.org/10.1016/j.ibiod.2009.09.004
  68. Yatsenko-Khmelevsky A. A. Fundamentals and methods of anatomical study of wood. Lenindrad, Moscow, 1954. (In Russ.).
  69. Александрова В. Д. (Aleksandrova) Геоботаническое районирование Арктики и Антарктики. Л.: Наука, 1977. 188 с.
  70. Алисов Б. П. (Alisov) Климат СССР: Учебник для геогр. специальностей ун-тов и пед. вузов. М.: Высш. школа, 1969. 104 c.
  71. Власов Д. Ю., Тешебаев Ш. Б., Зеленская М. С. и др. (Vlasov et al.) Микологические поражения материалов в помещениях как фактор риска для здоровья полярников // Гигиена и санитария. 2019. Т. 98. № 1. C. 17–21.
  72. Грищенко И. В. (Grishchenko) Климат // Архипелаг Новая Земля. Монография. Под общ. ред. П. В. Боярского. 2-е изд., перераб. и доп. М.: Паульсен, 2009.
  73. Иващенко В. Г., Шипилова Н. П., Кирцидели И. Ю. (Ivashchenko et al.) Экологический мониторинг возбудителей фузариоза семян зерновых культур на северо-западе России // Микология и фитопатология. 1997. Т. 31. Вып. 2. С. 64–69.
  74. Кирцидели И. Ю. (Kirtsideli) Микроскопические грибы в почвах острова Хейса (Земля Франца- Иосифа) // Новости систематики низших растений. 2015. Т. 49. С. 151–160.
  75. Кирцидели И. Ю., Власов Д. Ю., Абакумов Е. В. и др. (Kirtsideli et al.) Разнообразие и ферментативная активность микромицетов из почв Антарктики // Микология и фитопатология. 2010. Т. 44. Вып. 5. С. 387–397.
  76. Кирцидели И. Ю., Власов Д. Ю., Баранцевич Е. П. и др. (Kirtsideli et al.) Распространение терригенных микромицетов в водах арктических морей // Микология и фитопатология. 2012. Т. 46. Вып. 5. С. 306–310.
  77. Кирцидели И. Ю., Власов Д. Ю., Баранцевич Е. П. и др. (Kirtsideli et al.) Комплексы микроскопических грибов в почвах и грунтах полярного острова известий ЦИК (Карское море) // Микология и фитопатология. 2014. Т. 48. Вып. 3. С. 365–371.
  78. Кирцидели И. Ю., Абакумов Е. В., Тешебаев Ш. Б. и др. (Kirtsideli et al.) Микробные сообщества в районах арктических поселений // Гигиена и санитария. 2016. Т. 95. № 10. С. 923–929.
  79. Кирцидели И. Ю., Власов Д. Ю., Крыленков В. А. и др. (Kirtsideli et al.) Сравнительное исследование аэромикоты арктических станций по северному морскому пути // Экология человека. 2018. T. 4. С. 16–21.
  80. Кирцидели И. Ю., Власов Д. Ю., Ильюшин В. А. и др. (Kirtsideli et al.) Оценка антропогенной инвазии микроскопических грибов в арктические экосистемы (архипелаг Шпицберген) // Гигиена и санитария. 2020. Т. 99. № 2. С. 145–151.
  81. Кирцидели И. Ю., Лукина Е. Г., Ильюшин В. А. и др. (Kirtsideli et al.) Разнообразие микроскопических грибов на древесине в береговой зоне Гренландского моря (архипелаг Шпицберген) // Микология и фитопатология. 2021. Т. 55. № 3. С. 178–188.
  82. Кирцидели И. Ю., Власов Д. Ю., Ильюшин В. А. и др. (Kirtsideli et al.) Микроскопические грибы в почвах черневой тайги Западной Cибири // Микология и фитопатология. 2022. Т. 56. № 2. С. 86–95.
  83. Колосова М. И., Соловьева Н. Г. (Kolosova et al.) Основные анатомические признаки древесины лиственных деревьев и кустарников. СПб., 2013. 104 с.
  84. Молодняков С. А. (Molodnyakov) Климатические особенности района Новой Земли // Новая Земля. Природа. История. Археология. Культура. Кн. 1. Труды морской арктической комплексной экспедиции (МАКЭ) под общ. ред. П. В. Боярского. М.: Российский научно-исследовательский институт культурного и природного наследия имени Д. С. Лихачева, 1998. С. 101–116.
  85. Яценко-Хмелевский А.А. (Yatsenko-Khmelevsky) Основы и методы анатомического исследования древесины. М.; Л., 1954. 337 c.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences