The Impact of Landscape and Climate Features on Earthworm Numbers in Forest Ecosystems of the Southeast of Western Siberia

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The taiga and forest-steppe ecosystems of Western Siberia are subject to significant climatic and anthropogenic transformations. Understanding the relationship between the number of earthworms, which play an important role in forest communities, and environmental conditions can be used in monitoring the state of ecosystems. The goal of the work was to identify the relationship between the numbers of earthworms in communities of the forest-steppe and taiga zones in the southeast of Western Siberia and the landscape features, climatic parameters of the environment, as well as the timing of material collection during the warm season. The analysis included data on earthworm abundance from 62 habitats. Modeling was conducted by factor analysis of mixed data (FAMD). To identify their correlation with the numbers of earthworms, quantitative data on soil types and vegetation, physicochemical soil characteristics, climatic parameters and categorical data on orographic and hydrothermal zoning, geobotanical zoning on soil types and vegetation, and timing of material collection were considered. In all cases, the observed dispersion was better explained by the hydrothermic zoning of the territory, climatic and soil conditions and the resulting patterns were more indicative of the number of morphoecological groups, rather than individual species of earthworms. The assumption was confirmed that dependence on parameters affecting soil moisture was more characteristic to the burrowing group of worms; in other cases, there was no strong observable connection. Thus, it follows that in the southern taiga and the forest-steppe of the southeast of Western Siberia, the observed abundance in communities will depend to a lesser extent on the month of collection of material than is generally believed for temperate zone ecosystems.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Kim-Kashmenskaya

Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: m.kim-kashmenskaia@g.nsu.ru
Ресей, Pirogov St. 1, Novosibirsk, 630090

Әдебиет тізімі

  1. Alfimov A. V., Berman D. I., Bulakhova N. A., Zimnie temperaturnye usloviya v korneobitaemom sloe pochv v Sibiri i na severo-vostoke Azii (Winter temperature conditions in the root layer of soils in Siberia and Northeast Asia), Vestnik Severo-Vostochnogo nauchnogo tsentra DVO RAN, 2012, No. 3, pp. 10—18.
  2. Alfimov A. V., Distribution of minimum temperatures in the surface soil layer under the snow cover in Northern Eurasia, Eurasian Soil Science, 2005, Vol. 38, No. 4, pp. 384—391.
  3. Angst Š., Mueller C. W., Cajthaml T. et al., Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter, Geoderma, 2017, Vol. 289, pp. 29—35.
  4. Avetov N. A., Aleksandrovskii A. L., Alyabina I.O, et al, Natsional’nyi atlas pochv Rossiiskoi Federatsii (National Soil Atlas of the Russian Federation), Moscow: Astrel’, 2011, 632 p.
  5. Berman D. I., Bulakhova N. A., Meshcheryakova E. N., Cold hardiness and range of the earthworm Eisenia sibirica (Oligochaeta, Lumbricidae), Contemporary Problems of Ecology, 2016, Vol. 9, No. 1, pp. 45—52.
  6. Berman D. I., Leirikh A. H., Kholodoustoichivost’ massovykh pochvoobitayushchikh bespozvonochnykh zhivotnykh severo-vostoka Azii. 2. Kholodoustoichivost’ kak adaptatsiya k klimatu (Cold hardiness of mass soil invertebrate animals of Northeast Asia. 2. Cold hardiness as an adaptation to the climate), Zoologicheskii zhurnal, 2017, Vol. 96, No. 10, pp. 1119—1131.
  7. Berman D. I., Meshcheryakova E. N., Alfimov A. V., Leirikh A. N., Rasprostranenie dozhdevogo chervya Dendrobaena octaedra (Lumbricidae, Oligochaeta) na severe Golarktiki ogranicheno nedostatochnoi morozostoikost’yu (Distribution of the earthworm Dendrobaena octaedra (Lumbricidae, Oligochaeta) in the northern holarctic is restricted by its insufficient freeze tolerance), Zoologicheskii zhurnal, 2002, Vol. 81, No. 10, pp. 1210—1221.
  8. Berman D. I., Meshcheryakova E. N., Leirikh A. N., Egg cocoons of the earthworm Dendrodrilus rubidus tenuis (Lumbricidae, Oligochaeta) withstand the temperature of liquid nitrogen, Doklady Biological Sciences, 2010, Vol. 434, No. 1, pp. 347—350.
  9. Bessolitsyna E. P., Ecological and geographic distribution patterns of earthworms (Oligochaeta, Lumbricidae) in landscapes of Southern Middle Siberia, Russian Journal of Ecology, 2012, Vol. 43, No. 1, pp. 82—85.
  10. Blakemore R., Earthworms newly from Mongolia (Oligochaeta, Lumbricidae, Eisenia), ZooKeys, 2013, Vol. 285, pp. 1—21.
  11. Buchhorn M. et al., Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe, 2020.
  12. Byzova Y. B., Chadaeva Z. V., Sravnitel’naya kharakteristika pochvennoi fauny razlichnykh assotsiatsii pikhtovogo lesa (Kemerovskaya oblast’) [Comparative characteristics of the soil fauna of various fir forest associations (Kemerovo region)], Zoologicheskii zhurnal, 1965, Vol. 44, No. 3, pp. 331—339.
  13. Capowiez Y., Sammartino S., Keller T., Bottinelli N., Decreased burrowing activity of endogeic earthworms and effects on water infiltration in response to an increase in soil bulk density, Pedobiologia, 2021, Vol. 85—86, pp. 150728.
  14. Crumsey J. M., Le Moine J. M., Vogel C. S., Nadelhoffer K. J., Historical patterns of exotic earthworm distributions inform contemporary associations with soil physical and chemical factors across a northern temperate forest, Soil Biology and Biochemistry, 2014, Vol. 68, pp. 503—514.
  15. Curry J. P., Factors affecting the abundance of earthworms in soils, Earthworm ecology, CRC Press, Boca Raton, 2004, pp. 91—113.
  16. Díaz S., Ecosystem Function Measurement, Terrestrial Communities, In: Encyclopedia of Biodiversity, Waltham, MA: Academic Press, 2013, pp. 321—344.
  17. Duddigan S., Fraser T., Green I. et al., Plant, soil and faunal responses to a contrived pH gradient, Plant and Soil, 2021, Vol. 462, No. 1, pp. 505—524.
  18. Edwards C. A., Bohlen P. J., Biology and Ecology of Earthworms, London: Chapman and Hall, 1996, 426 p.
  19. Eggleton P., Inward K., Smith J. et al., A six-year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture, Soil Biology and Biochemistry, 2009, Vol. 41, No. 9, pp. 1857—1865.
  20. Enríquez S., Duarte C. M., Sand-Jensen K., Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C: N: P content, Oecologia, 1993, Vol. 94, No. 4, pp. 457—471.
  21. Ermolov S. A., Biotopicheskoe raspredelenie dozhdevykh chervei (Oligochaeta, Lumbricidae) v malykh rechnykh dolinakh lesostepnogo Priob’ya (Biotopical distribution of earthworms (Oligochaeta, Lumbricidae) in small river valleys of the forest-steppe Ob region), Russian Journal of Ecosystem Ecology, 2019, No. 2, 18 p.
  22. Ermolov S. A., Soobshchestva dozhdevykh chervei (Oligochaeta, Lumbricidae) khvoinykh i melkolistvennykh lesov lesostepnogo Priob’ya (Earthworm communities (Oligochaeta, Lumbricidae) of pine forests and small foliage forests in the forest-steppe Ob region), Voprosy lesnoi nauki, 2020, Vol. 3, No. 2, pp. 1—24.
  23. Fick S. E., Hijmans R. J., WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, International Journal of Climatology, 2017, Vol. 37, No. 12, pp. 4302—4315.
  24. Ganin G. N., Pochvennye zhivotnye Ussuriiskogo kraya (Soil animals of the Ussuri krai), Vladivostok–Khabarovsk: Dal’nauka, 1997, 160 p.
  25. Geraskina A., Shevchenko N., Distribution of epi-endogeic and endogeic earthworm species (Oligochaeta: Lumbricidae) in the forest belt of the Northwest Caucasus, Zootaxa, 2021, Vol. 4975, No. 3, pp. 561—573.
  26. Geraskina A. P., Dozhdevye chervi (Oligochaeta, Lumbricidae) okrestnostei pos. Dombai Teberdinskogo zapovednika (Severo-Zapadnyi Kavkaz, Karachaevo-Cherkessiya) (Earthworms (Oligochaeta, Lumbricidae) near the township Dombay of Teberda Reserve (Northwest Caucasus, Karachay-Cherkessia)), Trudy zoologicheskogo instituta RAN, 2016, Vol. 320, No. 4, pp. 450—466.
  27. Geras’kina A.P., Vliyanie dozhdevykh chervei raznykh morfo-ekologicheskikh grupp na akkumulyatsiyu ugleroda v lesnykh pochvakh (Impact of earthworms of different morpho-ecological groups on carbon accumulation in forest soils), Voprosy lesnoi nauki, 2020, Vol. 3, No. 2, pp. 1—20.
  28. Gilyarov M. S., Uchet krupnykh bespozvonochnykh (mezofauna) (Inventory of large vertebrates (mesofauna)), In: Kolichestvennye metody v pochvennoi zoologii (Numerical method in soil zoology), Moscow: Nauka, 1987, pp. 9—26.
  29. Gilyarov M. S., Zoologicheskii metod diagnostiki pochv (Zoological method of soil diagnostics), Moscow: Nauka, 1965, 281 p.
  30. Golovanova E. V., Dozhdevye chervi Omskoi oblasti (Earthworms of the Omsk region), Trudy Tomskogo gosudarstvennogo universiteta, 2010, Vol. 275, pp. 111—114.
  31. Gongal’skii K.B., Lesnye pozhary i pochvennaya fauna (Forest fires and soil fauna), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2014, 169 p.
  32. Gongalsky K. B., Belorustseva S. A., Kuznetsova D. M. et al., Spatial avoidance of patches of polluted chernozem soils by soil invertebrates, Insect Science, 2009, Vol. 16, No. 1, pp. 99—105.
  33. Helling C. S., Chesters G., Corey R. B., Contribution of Organic Matter and Clay to Soil Cation-Exchange Capacity as Affected by the pH of the Saturating Solution, Soil Science Soc of Amer J., 1964, Vol. 28, No. 4, pp. 517—520.
  34. Hengl T., Mendes de Jesus J., Heuvelink G. B. et al., SoilGrids 250 m: Global gridded soil information based on machine learning, PLoS Оne, 2017, Vol. 12, No. 2, P. e0169748.
  35. Holmstrup M., Østergaard I. K., Nielsen A., Hansen B. T., The relationship between temperature and cocoon incubation time for some lumbricid earthworm species, Pedobiologia, 1991, Vol. 35, No. 3, pp. 179—184.
  36. Joschko M., Fox C. A., Lentzsch P. et al., Spatial analysis of earthworm biodiversity at the regional scale, Agriculture, Ecosystems and Environment, 2006, Vol. 112, No. 4, pp. 367—380.
  37. Karger D. N., Zimmermann N. E., Climatologies at high resolution for the earth’s land surface areas. CHELSA V1. 2: Technical specification, Switzerland: Swiss Federal Research Institute WSL, 2019.
  38. Kassambara A., Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra< Sthda, 2017, 170 p.
  39. Keudel M., Schrader S., Axial and radial pressure exerted by earthworms of different ecological groups, Biology and Fertility of Soils, 1999, Vol. 29, No. 3, pp. 262—269.
  40. Krylova L. P., Akulova L. I., Dolgin M. M., Dozhdevye chervi (Oligochaeta, Lumbricidae) taezhnoi zony Respubliki Komi (Earthworms (Oligochaeta, Lumbricidae) of the taiga zone of the Komi Republic), Syktyvkar: Komi gosudarstvennyi pedagogicheskii institut, 2011, 104 p.
  41. Lang B., Russell D. J., Effects of earthworms on bulk density: A meta-analysis, European Journal of Soil Science, 2020, Vol. 71, No. 1, pp. 80—83.
  42. Lapshina E. I., Karta rastitel’nosti yugo-vostoka Zapadnoi Sibiri, masshtab 1:1 000 000. (Vegetation map of the southeast of Western Siberia, scale 1:1 000 000), 1963, 2 sheets.
  43. Lavelle P., Spain A. V., Soil Ecology, Dordrecht: Kluwer Academic Publishers, 2001, 654 p.
  44. Li J., Zhang Z., Wang H., Wang S., Chen Q. et al., Urban land-use impacts on composition and spatiotemporal variations in abundance and biomass of earthworm community, Journal of Forestry Research, 2020, Vol. 31, No. 1, pp. 325—331.
  45. Makunina N. I., Rastitel’nost’ lesostepi Zapadno-Sibirskoi ravniny i Altae-Sayanskoi gornoi oblasti (The forest-steppe vegetation of the west Siberian plain and the Altai-Sayan mountain region), Novosibirsk: Geo, 2016, 180 p.
  46. Marchán D. F., Refoyo P., Fernández R. et al., Macroecological inferences on soil fauna through comparative niche modeling: The case of Hormogastridae (Annelida, Oligochaeta), European Journal of Soil Biology, 2016, Vol. 75, pp. 115—122.
  47. Meshcheryakova E. N., Berman D. I., Ustoichivost’ k otritsatel’nym temperaturam i geograficheskoe rasprostranenie dozhdevykh chervei (Oligochaeta, Lumbricidae, Moniligastridae) (The coldvhardiness and geographic distribution of earthworms (Oligochaeta, Lumbricidae, Moniligastridae)), Zoologicheskii zhurnal, 2014, Vol. 93, No. 1, pp. 53—64.
  48. Mordkovich V. G., Zooindikatsiya pochv i pochvennykh protsessov (Zooindication of soils and soil processes), Pochvovedenie, 1991, Vol. 8, pp. 40—47.
  49. Nordström S., Rundgren S., Environmental factors and lumbricid associations in southern Sweden, Pedobiologia, 1974, Vol. 14, pp. 1—27.
  50. Pagenkemper S. K., Athmann M., Uteau D. et al., The effect of earthworm activity on soil bioporosity — Investigated with X-ray computed tomography and endoscopy, Soil and Tillage Research, 2015, Vol. 146, pp. 79—88.
  51. Perel’ T.S., Sokolov D. F., Kolichestvennaya otsenka uchastiya dozhdevykh chervei Lumbricus terrestris Linne (Lumbricidae, Oligocheta) v pererabotke lesnogo opada (Quantitative assessment of the participation of earthworms Lumbricus terrestris Linne (Lumbricidae, Oligocheta) in the processing of forest litter), Zoologicheskii zhurnal, 1964, Vol. 43, No. 11, pp. 1618—1625.
  52. Perel’ T.S., Zhiznennye formy dozhdevykh chervei (Lumbricidae) (Life forms of earthworms of the family Lumbricidae), Zhurnal obshchei biologii, 1975, Vol. 36, No. 2, pp. 189—202.
  53. Pesenko Y. A., Printsipy i metody kolichestvennogo analiza v faunisticheskikh issledovaniyakh (Principles and methods of quantitative analysis in studies of fauna), Moscow: Nauka, 1982, 287 p.
  54. Phillips H., Beaumelle L., Tyndall K. et al., The effects of global change on soil faunal communities: a meta-analytic approach, Research Ideas and Outcomes, 2019, Vol. 5, P. e36427.
  55. Poggio L. et al., SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 2021, Vol. 7, No. 1, pp. 217—240.
  56. Pokarzhevskii A. D., Gongal’skii K.B., Zaitsev F. S., Savin F. A., Prostranstvennaya ekologiya pochvennykh zhivotnykh (Spatial ecology of soil animals), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2007, 175 p.
  57. Räty M., Huhta V., Earthworm communities in birch stands with different origin in central Finland, Pedobiologia, 2004, Vol. 48, No. 3, pp. 283—291.
  58. Rikhter G. D., Zapadnaya Sibir’ (Western Siberia), Moscow: AN SSSR, 1963, 488 p.
  59. Römbke J., Jänsch S., Didden W., The use of earthworms in ecological soil classification and assessment concepts, Ecotoxicology and Environmental Safety, 2005, Vol. 62, No. 2, pp. 249—265.
  60. Scheu S., Wolters V., Influence of fragmentation and bioturbation on the decomposition of 14C-labelled beech leaf litter, Soil Biology and Biochemistry, 1991, Vol. 23, No. 11, pp. 1029—1034.
  61. Shekhovtsov S. V., Shipova A. A., Poluboyarova T. V. et al., Species delimitation of the Eisenia nordenskioldi complex (Oligochaeta, Lumbricidae) using transcriptomic data, Frontiers in Genetics, 2020, Vol. 11, pp. 598196.
  62. Slyadnev A. P., Geograficheskie osnovy klimaticheskogo raionirovaniya i opyt ikh primeneniya na yugo-vostoke Zapadno-Sibirskoi ravniny (Geographical basis of climatic zoning and experience of their application in the southeast of the West Siberian Plain), Geografiya Zapadnoi Sibiri, 1965, Vol. 1, pp. 3—122.
  63. Southwood T. R.E., Henderson P. A., Ecological methods, Blackwell Science, 2000, 593 p.
  64. Tuanmu M., Jetz W., A global 1-km consensus land-cover product for biodiversity and ecosystem modelling, Global Ecology and Biogeography, 2014, Vol. 23, No. 9, pp. 1031—1045.
  65. Valckx J., Govers G., Hermy M., Muys B., Optimizing Earthworm Sampling in Ecosystems, In: Biology of Earthworms, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 19—38.
  66. Van Groenigen J. W., Van Groenigen K. J., Koopmans G. F. et al., How fertile are earthworm casts? A meta-analysis, Geoderma, 2019, Vol. 338, pp. 525—535.
  67. Vsevolodova-Perel’ T.S., Dozhdevye chervi fauny Rossii: Kadastr i opredelitel’ (Earthworms of Russian fauna: inventory and key), Moscow: Nauka, 1997, 101 p.
  68. Walker B. H., Biodiversity and Ecological Redundancy, Conservation Biology, 1992, Vol. 6, No. 1, pp. 18—23.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Block diagram of modelling based on categorical and quantitative environmental variables and earthworm abundance data.

Жүктеу (54KB)
3. Fig. 2. Correlation map of quantitative climatic indices, earthworm species abundance (a) and earthworm morpho-ecological groups (c), confidence ellipses (confidence level 0.95) for the corresponding ordination of communities based on the division by hydrothermal zones (b, d), obtained using FAMD. Notation: earthworm species as in Table 2; total - total number of earthworms in the community; nfd - number of days with temperatures below 0 °C, sw - snow water reserve, shc_5 - Selyaninov hydrothermal coefficient for the period with temperatures above 5 °C, gsp_5 - sum of precipitation for the period with temperatures above 5 °C, fcf - frequency of temperature transition through 0 °C, gdd_5 - sum of accumulated temperatures for the period with temperatures above 5 °C.

Жүктеу (89KB)
4. Fig. 3. Correlation map of quantitative soil characteristics and abundance of morpho-ecological groups of earthworms (a) and abundance of morpho-ecological groups without quantitative environmental factors (c), confidence ellipses (confidence level 0.95) at appropriate ordination of communities based on division by hydrothermal zones (b, d), obtained using FAMD. Notation: bd - bulk density of the fine-grained fraction, nitrogen - total nitrogen (N), silt - fraction of silt particles (≥0.002 mm and ≤0.05 mm) in the fine-grained fraction, sand - fraction of sand particles (>0. 05 mm) in the fine-grained fraction, soc - soil organic carbon content in the fine-grained fraction, ocd - organic carbon density, clay - fraction of clay particles (< 0.002 mm) in the fine-grained fraction, cec - cation exchange capacity of soil, pH - acidity of soil water extract.

Жүктеу (85KB)
5. Fig. 4. Ordination of communities based on the abundance of morpho-ecological forms of earthworms (obtained using FAMD). Contribution to the formation of the first two principal components of individual categories of qualitative traits involved in the modelling and the degree of their description by components (a), confidence ellipses (confidence level 0.95) at ordination by orographic zoning (b), month of collection (c), hydrothermal zoning (d). Notation: SLP - northern forest-steppe, sub-taiga, UL - southern forest-steppe, Tg - taiga, Bar - Barabinsk forest-steppe, PrO - Priob plateau, Sal - Salair, Gsh - Gornaya Shoria, Al - Altai, Kal - Kuznetskiy Alatau, Ma - May, Jn - June, Jl - July, Au - August, Sen - September.

Жүктеу (82KB)

© Russian Academy of Sciences, 2024