Dynamics of Certain Macroelements During the Decomposition of Fallen Trees in an Old-Growth Middle-Taiga Spruce Forest of Kivach Nature Reserve

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dynamics of certain macroelements’ content (P, K, Ca, Mg and S) during the decomposition of bark and wood of fallen trees of the main forest-forming tree species the middle-taiga blueberry spruce forest (Kivach Nature Reserve, Republic of Karelia) was estimated. The initial content of most macroelements was higher in bark compared to that in wood. The direction and intensity of the element content dynamics in deadwood during the decomposition depended on the tree species identity and the log fraction. Depending on tree species, the content of P, and S increased in both bark and wood. The Mg content decreased in bark of deciduous species’ deadwood and did not change significantly in the bark of conifers, whereas it decreased in wood of all studied tree species. The K content decreased in both bark and wood of all studied tree species. The models of the macroelements stocks dynamics on the log scale were presented. In the bark, the stock of all macroelements decreased in direct proportion to the intensity of bark fragmentation: the loss rates varied from –0.08 to –0.69 year–1, depending on the tree species. In wood, the P amount increased in spruce logs and changed only slightly in logs of the other tree species. The stock of other macroelements decreased at a rate not exceeding –0.08 year–1. The loss intensity of those macroelements was higher in the logs of deciduous tree species compared to that in coniferous ones. The results obtained highlight the significant role of coarse woody debris, primarily coniferous tree species, as a long-term pool of macroelements within the biogeochemical cycle in the forest ecosystems.

Full Text

Restricted Access

About the authors

I. V. Romashkin

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: romashkin@krc.karelia.ru
Russian Federation, 11, Pushkinskaya St., Petrozavodsk, 185910

E. A. Kapitsa

Kirov Saint Petersburg State Forest Technical University

Email: romashkin@krc.karelia.ru
Russian Federation, 5, Institutsky All., Saint Petersburg, 194021

K. M. Nikerova

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: romashkin@krc.karelia.ru
Russian Federation, 11, Pushkinskaya St., Petrozavodsk, 185910

E. V. Shorokhova

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: romashkin@krc.karelia.ru
Russian Federation, 11, Pushkinskaya St., Petrozavodsk, 185910

References

  1. Akanova N.I., Kozlova A.V., Mukhina M.T., Rol' magniya v sisteme pitaniya rastenii (Magnesium role in plant nutrition system), Agrokhimicheskii vestnik, 2021, No. 6, pp. 66–72. doi: 10.24412/1029-2551-2021-6-014
  2. Alban D.H., Pastor J., Decomposition of aspen, spruce, and pine boles on two sites in Minnesota, Canadian Journal of Forest Research, 1993, Vol. 23, No. 9, pp. 1744–1749.
  3. Apostolov S.A., Novyi spravochnik khimika i tekhnologa. Syr'e i produkty promyshlennosti organicheskikh i neorganicheskikh veshchestv (New handbook of a chemist and technologist. Raw materials and products of the organic and inorganic substances industry), Saint Petersburg: Professional, 2006, Part 2, 1142 p.
  4. Aristarkhov A.N., Agrokhimiya sery (Agrochemistry of sulfur), Moscow: VNIIA, 2007, 272 p.
  5. Bazilevich N.I., Titlyanova A.A., Bioticheskii krugovorot na pyati kontinentakh: azot i zol'nye elementy v prirodnykh nazemnykh ekosistemakh (Biotic turnover on five continents: element exchange processes in terrestrial natural ecosystems), Novosibirsk: Izd-vo SO RAN, 2008, 376 p.
  6. Berg B., McClaugherty C., Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, Switzerland: Springer Cham, 2020, 332 p.
  7. Bergström B., Chemical and structural changes during heartwood formation in Pinus sylvestris, Glasgow Medical Journal, 2003, Vol. 76, No. 1, pp. 59–71. doi: 10.1093/forestry/76.1.45
  8. Błońska E., Kacprzyk M., Spólnik A., Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage, Ecological Research, 2017, Vol. 32, No. 2, pp. 193–203.
  9. Boddy L., Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris, Ecological Bulletin, 2001, Vol. 49, pp. 43–56.
  10. Brais S., Paré D., Lierman C., Tree bole mineralization rates of four species of the Canadian eastern boreal forest: implications for nutrient dynamics following stand-replacing disturbances, Canadian Journal of Forest Research, 2006, Vol. 36, No. 9, pp. 2331–2340.
  11. Brauns F.E., Brauns D.A., Khimiya lignina (Chemistry of lignin), Lesnaya promyshlennost': 1964, 757 p.
  12. Busse M.D., Downed bole-wood decomposition in lodgepole pine forests of Central Oregon, Soil Science Society of America Journal, 1994, Vol. 58, No. 1, pp. 221–227.
  13. Chang C., Wang Z., Tan B., Li J., Cao R., Wang Q., Yang W., Weedon J.T., Cornelissen J.H.C., Tissue type and location within forest together regulate decay trajectories of Abies faxoniana logs at early and mid-decay stage, Forest Ecology and Management, 2020, Vol. 475, pp. 1–10. doi: 10.1016/j.foreco.2020.118411
  14. Cleveland C.C., Townsend A.R., Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere, Proceedings of the National Academy of Sciences of the United States of America, 2006, Vol. 103, No. 27, pp. 10316–10321.
  15. Clinton P.W., Buchanan P.K., Wilke J.P., Small S.J., Kimberley M.O., Decomposition of Nothofagus wood in vitro and nutrient mobilization by fungi, Canadian Journal of Forest Research, 2009, Vol. 39, pp. 2193–2202.
  16. Dutton M.V., Evans C.S., Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment, Canadian Journal of Microbiology, 1996, Vol. 42, No. 9, pp. 881–895.
  17. Dynesius M., Jonsson B.G., Dating uprooted trees: comparison and application of eight methods in a boreal forest, Canadian Journal of Forest Research, 1991, Vol. 21, No. 5, pp. 655–665.
  18. Fahey T.J., Battles J.J., Wilson G.F., Responses of early successional northern hardwood forests to changes in nutrient availability, Ecological Monographs, 1998, Vol. 68, pp. 183–212.
  19. Faustova N.M., Khimicheskii sostav kory i drevesiny osiny Populus tremula L.: diss. kand. khim. nauk (Chemical composition of bark and wood of Populus tremula L. Candidate's chem. sci. thesis), Saint Petersburg, 2005, 208 p.
  20. Fedorets N.G., Bakhmet O.N., Ekologicheskie osobennosti transformatsii soedinenii ugleroda i azota v lesnykh pochvakh (Ecological specifics of carbon and nitrogen compounds conservation), Petrozavodsk: Izd-vo KarNTs RAN, 2003, 240 p.
  21. Filipiak M., Pollen stoichiometry may influence detrital terrestrial and aquatic food webs, Frontiers in Ecology and Evolution, 2016, Vol. 4, Article 138, pp. 1–8. doi: 10.3389/fevo.2016.00138
  22. Filipiak M., Sobczyk Ł., Weiner J., Fungal transformation of tree stumps into a suitable resource for xylophagous beetles via changes in elemental ratios, Insects, 2016, Vol. 7, Article 13, pp. 1–12. doi: 10.3390/insects7020013
  23. Ganjegunte G.K., Condron L.M., Clinton P.W., Davis M.R., Mahieu N., Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris, Forest Ecology and Management, 2004, Vol. 187, pp. 197–211. doi: 10.3832/ifor1591-008
  24. Geles I.S., Drevesnaya biomassa i osnovy ekologicheski priemlemykh tekhnologii ee khimiko-mekhanicheskoi pererabotki (Wood biomass and the principles of environmentally friendly technologies for its chemical-mechanical processing), Petrozavodsk: KarNTs RAN, 2001, 382 p.
  25. Griffiths R.P., Baham J.E., Caldwell B.A., Soil solution chemistry of ectomycorrhizal mats in forest soil, Soil Biology and Biochemistry, 1994, Vol. 26, pp. 331–337. doi: 10.1016/0038-0717(94)90282-8
  26. Hafner S.D., Groffman P.M., Mitchell M.J., Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York state, Biogeochemistry, 2005, Vol. 74, pp. 257–282. doi: 10.1007/s10533-004-4722-6
  27. Harmon M.E., Sexton J., Caldwell B.A., Carpenter S.E., Fungal sporocarp mediated losses of Ca, Fe, K, Mg, Mn, N, P, and Zn from conifer logs in the early stages of decomposition, Canadian Journal of Forest Research, 1994, Vol. 24, pp. 1883–1893.
  28. Harmon M.E., The role of woody detritus in biogeochemical cycles: past, present, and future, Biogeochemistry, 2021, Vol. 154, pp. 349–369. doi: 10.1007/s10533-020-00751-x
  29. Holub S.M., Lajtha K., Spears J.D.H., A reanalysis of nutrient dynamics in coniferous coarse woody debris, Canadian Journal of Forest Research, 2001, Vol. 31, No. 11, pp. 1894–1902. doi: 10.1139/cjfr-31-11-1894
  30. Jellison J., Connolly J., Goodell B., Illman B., Frank F., Ostrofsky A., The role of cations in the biodegradation of wood by the brown rot fungi, International Biodeterioration and Biodegradation, 1997, Vol. 39, pp. 165–179.
  31. Kabata-Pendias A., Pendias H., Trace elements in soil & plants, Moscow: Mir, 1989, 440 p.
  32. Kazimirov N.I., Morozova R.M., Biologicheskii krugovorot veshchestv v el'nikakh Karelii (Biological cycle of matter in spruce forests of Karelia), Leningrad: Nauka, 1973, 175 p.
  33. Kazimirov N.I., Morozova R.M., Kulikova V.K., Organicheskaya massa i potoki veshchestva v bereznyakakh srednei taigi (Mass of organics and material flows of birch forests in middle taiga), Leningrad: Nauka, 1978, 216 p.
  34. Kazimirov N.I., Volkov A.D., Zyabchenko S.S., Ivanchikov A.A., Morozova R.M., Obmen veshchestv i energii v sosnovykh lesakh Evropeiskogo Severa (Mass and energy exchange of pine forests in Northern Europe), Leningrad: Nauka, 1977, 303 p.
  35. Khan K., Hussain A., Jamil M.A., Duan W., Chen L., Khan A., Alteration in forest soil biogeochemistry through coarse wood debris in northeast China, Forests, 2022, Vol. 13, No. 11, Article 1861, pp. 1–17. doi: 10.3390/f13111861
  36. Khanina L.G., Smirnov V.E., Bobrovskii M.V., Elementnyi sostav valezha razlichnykh drevesnykh porod i stadii razlozheniya v shirokolistvennom lesu zapovednika "Kaluzhskie zaseki" (Dead wood elements composition in different tree species and stages of decay in the broad-leaved forests of the Kaluzhskie Zaseki Reserve), Lesovedenie, 2023, No. 4, pp. 353–368.
  37. Krankina O.N., Harmon M.E., Griazkin A.V., Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level, Canadian Journal of Forest Research, 1999, Vol. 29, No. 1, pp. 20–32.
  38. Laiho R., Prescott C.E., Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis, Canadian Journal of Forest Research, 2004, Vol. 34, No. 4, pp. 763–777. doi: 10.1139/X03-241
  39. Laiho R., Prescott C.E., The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests, Canadian Journal of Forest Research, 1999, Vol. 29, No. 10, pp. 1592–1603. doi: 10.1139/x99-132
  40. Marschner H., Mineral Nutrition of Higher Plants, London: Academic Press, 2012, 651 p.
  41. Means J.E., MacMillan P.C., Cromack K., Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon, USA, Canadian Journal of Forest Research, 1992, Vol. 22, pp. 1536–1546.
  42. Meerts P., Mineral nutrient concentrations in sapwood and heartwood: a literature review, Annals of Forest Science, 2002, Vol. 59, No. 7, pp. 713–722. doi: 10.1051/forest:2002059
  43. Minnich C., Peršoh D., Poll C., Borken W., Changes in chemical and microbial soil parameters following 8 years of deadwood decay: An experiment with logs of 13 tree species in 30 forests, Ecosystems, 2021, Vol. 142, pp. 287–300. doi: 10.1007/s10021-020-00562-z
  44. Mukhortova L.V., Carbon and nutrient release during decomposition of coarse woody debris in forest ecosystems of Central Siberia, Folia Forestalia Polonica, 2012, Vol. 54, No. 2, pp. 71–83. doi: 10.5281/zenodo.30777
  45. Müller J., Bütler R., A review of habitat thresholds for dead wood: A baseline for management recommendations in European forests, European Journal of Forest Research, 2010, Vol. 129, No. 6, pp. 981–992. doi: 10.1007/s10342-010-0400-5
  46. Olson J.S., Energy Storage and the Balance of Producers and Decomposers in Ecological Systems, Ecology, 1963, Vol. 44, No. 2, pp. 322–331.
  47. Ostrofsky A., Jellison J., Smith K.T., Shortle W.C., Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi, Canadian Journal of Forest Research, 1997, Vol. 27, No. 4, pp. 567–571. doi: 10.1139/x96-188
  48. Palviainen M., Finér L., Decomposition and nutrient release from Norway spruce coarse roots and stumps – A 40-year chronosequence study, Forest Ecology and Management, 2015, Vol. 358, No. 1, pp. 1–11. doi: 10.1016/j.foreco.2015.08.036
  49. Palviainen M., Finér L., Laiho R., Shorohova E., Kapit-sa E., Vanha-Majamaa I., Phosphorus and base cation accumulation and release patterns in decomposing Scots pine, Norway spruce and silver birch stumps, Forest Ecology and Management, 2011, Vol. 260, pp. 1478–1489. doi: 10.1016/j.foreco.2010.07.046
  50. Pastorelli R., De Meo I., Lagomarsino A., The necrobiome of deadwood: The life after death, Ecologies, 2023, Vol. 4, No. 1, pp. 20–38. doi: 10.3390/ecologies4010003
  51. Piaszczyk W., Błońska E., Lasota J., Soil biochemical properties and stabilization of soil organic matter in relation to deadwood of different species, FEMS Microbiological Ecology, 2019, Vol. 95, No. 3, fiz011. doi: 10.1093/femsec/fiz011
  52. Poluboyarinov O.I., Plotnost' drevesiny (The density of wood), Moscow: Lesnaya promyshlennost', 1976, 159 p.
  53. Poluboyarinov O.I., Sorokin A.M., Fizicheskie svoistva osinovoi kory i ee komponentov (Physical properties of aspen bark and its components), Izvestiya vuzov. Lesnoi zhurnal., 1992, No. 3, pp. 67–69.
  54. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2024.
  55. Rodin L.E., Bazilevich N.I., Dinamika organicheskogo veshchestva i biologicheskii krugovorot zol'nykh elementov i azota v osnovnykh tipakh rastitel'nosti zemnogo shara (Organic matter dynamics and biogeochemical cycles of mineral constituents and nitrogen across the dominant vegetation types around the world), Moscow – Leningrad: Nauka, 1965, 253 p.
  56. Romashkin I., Shorohova E., Kapitsa E., Galibina N., Nikerova K., Carbon and nitrogen dynamics along the log bark decomposition continuum in a mesic old-growth boreal forest, European Journal of Forest Research, 2018, Vol. 137, No. 5, pp. 1–15. doi: 10.1007/s10342-018-1131-2
  57. Romashkin I., Shorohova E., Kapitsa E., Galibina N., Nikerova K., Substrate quality regulates density loss, cellulose degradation and nitrogen dynamics in downed woody debris in a boreal forest, Forest Ecology and Management, 2021, Vol. 491, Article 119143, pp. 1–10. DOI: https://doi.org/10.1016/j.foreco.2021.119143
  58. Russell M.B., Fraver S., Aakala T., Gove J.H., Woodall C.W., D’Amato A.W., Ducey M.J., Quantifying carbon stores and decomposition in dead wood: a review, Forest Ecology and Management, 2015, Vol. 350, pp. 107–128. doi: 10.1016/j.foreco.2015.04.033
  59. Saarela K.-E., Elemental analysis of wood materials by external millibeam thick target PIXE, PhD thesis, Åbo, Finland: Åbo Akademi University, 2009, 64 p.
  60. Saunders M.R., Fraver S., Wagner R.G., Nutrient concentration of down woody debris in mixedwood forests in central Maine, USA, Silva Fennica, 2011, Vol. 45, No. 2, pp. 197–210. doi: 10.14214/sf.112
  61. Schilling J.S., Oxalate production and cation translocation during wood biodegradation by fungi, PhD thesis, The University of Maine, 2006, 120 p.
  62. Schwarze F.W.M.R., Engels J., Mattheck C., Fungal strategies of wood decay in trees, Heidelberg: Springer Berlin, 2000, 185 p. doi: 10.1007/978-3-642-57302-6
  63. Shorohova E., Kapitsa E., Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests, Forest Ecology and Management, 2014, Vol. 315, pp. 173–184. doi: 10.1016/j.foreco.2013.12.025
  64. Shorohova E., Kapitsa E., Kazartsev I., Romashkin I., Polevoi A., Kushnevskaya H., Tree species traits are the predominant control on the decomposition rate of tree log bark in a mesic old-growth boreal forest, Forest Ecology and Management, 2016, Vol. 377, pp. 36–45. doi: 10.1016/j.foreco.2016.06.036
  65. Shorohova E., Shorohov A., Coarse woody debris dynamics and stores in the boreal virgin spruce forest, Ecological Bulletin, 2001, Vol. 49, pp. 129–135. doi: 10.2307/20113270
  66. Shortle W.C., Smith K.T., Jellison J., Schilling J.S., Potential of decaying wood to restore root-available base cations in depleted forest soils, Canadian Journal of Forest Research, 2012, Vol. 42, No. 6, pp. 1015–1024. DOI: doi.org/10.1139/X2012-056
  67. Skonieczna J., Małek S., Polowy K., Węgiel A., Element content of Scots pine (Pinus sylvestris L.) stands of different densities, Drewno, 2014, Vol. 57, No. 192, pp. 77–87. doi: 10.12841/wood.1644-3985.S13.05
  68. Skorokhodova S.B., O klimate zapovednika ''Kivach'' (Climate of Kivach Nature Reserve), In: Trudy gosudarstvennogo prirodnogo zapovednika ''Kivach'' (Proceedings of Kivach State Nature Reserve), Petrozavodsk: Izd-vo PetrGU, 2008, Vol. 4, pp. 3-34.
  69. Smith K.T., Shortle W.C., Jellison J., Connolly J., Schilling J., Concentrations of Ca and Mg in early stages of sapwood decay in red spruce, eastern hemlock, red maple, and paper birch, Canadian Journal of Forest Research, 2007, Vol. 37, No. 5, pp. 957–965. doi: 10.1139/X06-264
  70. Sokolova V.E., Shorokhova E.V., Solov'ev V.A., Grin'ko-va E.Y., Alekseeva S.A., Dinamika mineral'nykh elementov pri ksilolize krupnykh drevesnykh ostatkov v el'nikakh kislichnykh yuzhnoi taigi (The dynamics of mineral nutrients in the course of xylosis of large wood debris in wood sorrel spruce forests of the Southern taiga), Lesovedenie, 2007, No. 5, pp. 32–38.
  71. Sollins P., Cline S.P., Verhoeven T., Sachs D., Spycher G., Patterns of log decay in old-growth Douglas-fir forests, Canadian Journal of Forest Research, 1987, Vol. 17, pp. 1585–1595. doi: 10.1139/x87-243
  72. Storozhenko V.G., Bondartseva M.A., Solov'ev V.A., Krutov V.I., Nauchnye osnovy ustoichivosti lesov k derevorazrushayushchim gribam (The fundamentals of forest resilience to wood-destroying fungi), Moscow: Nauka, 1992, 122 p.
  73. Storozhenko V.G., Drevesnyi otpad v strukturakh lesnogo biogeotsenoza (Wood coarse debris in forest biogeocenosis structures), Khvoinye boreal'noi zony, 2010, Vol. 27, No. 3–4, pp. 279–283.
  74. Stutz K., Kaiser K., Wambsganss J., Santos F., Berhe A.A., Lang F., Lignin from white-rotted European beech deadwood and soil functions, Biogeochemistry, 2019, Vol. 145, pp. 81–105. doi: 10.1007/s10533-019-00593-2
  75. Stutz K.P., Lang F., Potentials and unknowns in managing coarse woody debris for soil functioning, Forests, 2017, Vol. 8, No. 2, Article 37. doi: 10.3390/f8020037
  76. Ulyshen M.D., Wood decomposition as influenced by invertebrates, Biological Reviews, 2014, Vol. 91, No. 1, pp. 70–85.
  77. Wells J.M., Boddy L., Effect of temperature on wood decay and translocation of soil-derived phosphorus in mycelial cord systems, New Phytology, 1995, Vol. 129, pp. 289–297.
  78. Yatskov M., Harmon M.E., Krankina O.N., A chronosequence of wood decomposition in the boreal forests of Russia, Canadian Journal of Forest Research, 2003, Vol. 33, No. 7, pp. 1211–1226.
  79. Zhou L., Dai L., Gu H., Zhong L., Review on the decomposition and influence factors of coarse woody debris in forest ecosystem, Journal of Forestry Research, 2007, Vol. 18, pp. 48–54.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of P, K, Ca, Mg and S content per unit mass and volume (%) in bark and wood of deadwood during decomposition. The values of the parameter coefficients of the used generalised linear models (GLM) are presented in Table 4.

Download (716KB)
3. Fig. 2. Results of analysing the dynamics of macronutrients (P, K, Ca, Mg and S) content in bark and deadwood of the considered tree species using multidimensional scaling (NMDS). Denotations: A, differences between stem fractions without regard to species; B, differences between species in bark; C, differences between species in wood; age, age of tree die-off (duration of decomposition), class, class of decomposition, Xm(v), element (X) content per unit mass (m) or unit volume (v). Ovals show the standard deviation, arrows - the direction of increase of the parameter value.

Download (661KB)
4. Fig. 3. Models of macronutrient (kg m-3) stock dynamics (P, K, Ca, Mg and S) in deadwood bark and wood during decomposition at the deadwood trunk scale in terms of 1 m3. Parameters of the models are presented in Table 5.

Download (290KB)

Copyright (c) 2024 Russian Academy of Sciences