Growth Features of the Guanylurea Hydrogen Phosphite Single Crystal

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article presents the results of the study of aqueous solutions of guanylurea hydrophosphite (GUHP), in particular the isothermal cut of the phase diagram in the system of initial reagents for the synthesis of GUHP salt at 25 and 45°C. The solubility of GUHP in water was studied depending on pH. The growth conditions of bulk crystals were determined. The indexing of GUHP crystal faces was carried out. For the first time, the features of the real structure of GUHP single crystals were studied depending on the growth conditions.

Sobre autores

N. Kozlova

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: kozlova.n@crys.ras.ru
Moscow, 119333 Russia

E. Rudneva

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Moscow, 119333 Russia

V. Komornikov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Moscow, 119333 Russia

V. Manomenova

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Moscow, 119333 Russia

A. Voloshin

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”; Mendeleev University of Chemical Technology of Russia; National University of Science and Technology “MISIS”

Moscow, 119333 Russia; Moscow, 125047 Russia; Moscow, 119049 Russia

Bibliografia

  1. Beard M.C., Turner G.M., Schmuttenmaer C.A. // J. Phys. Chem. B. 2002. V. 106. № 29. P. 7146. https://doi.org/10.1021/jp020579i
  2. Sinko A., Ozheredov I., Rudneva E. et al. // Electronics. 2022. V. 11. № 17. P. 2731. https://doi.org/10.3390/electronics11172731
  3. Sinko A., Solyankin P., Kargovsky A. et al. // Sci. Rep. 2021. V. 11. № 1. P. 23433. https://doi.org/10.1038/s41598-021-02862-3
  4. Fridrichova M., Nemec I., Cisarova I. et al. // Cryst EngComm. 2010. V. 12. № 7. P. 2054. https://doi.org/10.1039/B924973G
  5. Kroupa J. // J. Opt. 2010. V. 12. 045706. https://doi.org/10.1088/2040-8978/12/4/045706
  6. Kroupa J., Fridrichova M. // J. Opt. 2011. V. 13. 035204. https://doi.org/10.1088/2040-8978/13/3/035204
  7. Fridrichova M., Kroupa J., Nemec I. et al. // Phase Transitions. 2010. V. 83. № 10–11. P. 761. https://doi.org/10.1080/01411594.2010.509044
  8. Kaminskii A.A., Becker P., Rhee H. et al. // Phys. Status Solidi. B. 2013. V. 250. № 9. P. 1837. https://doi.org/10.1002/pssb.201349201
  9. Каминский А.А., Маноменова В.Л., Руднева Е.Б. и др. // Кристаллография. 2019. Т. 64. № 4. С. 645. https://doi.org/10.1134/S002347611904009X
  10. Glikin A.E., Kovalev S.I., Rudneva E.B. et al. // J. Cryst. Growth. 2003. V. 255. № 1–2. P. 150. https://doi.org/10.1016/S0022-0248(03)01189-8
  11. Tanner B.K. X-ray diffraction topography. New York: Pergamon Press, 1976. P. 174.
  12. Воронцов Д.А., Ершов В.П., Портнов В.Н. и др. // Вестник Нижегородского университета им. Н.И. Лобачевского. 2010. № 4. С. 49.
  13. Ефремова Е.П., Кузнецов В.А., Климова А.Ю. // Кристаллография. 1993. Т. 38. Вып 5. С. 171.
  14. Liu F., Lisong Z., Yu G. et al. // Cryst. Res. Technol. 2015. V. 50. № 2. P. 164. https://doi.org/10.1002/crat.201400304

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025