Defects initiating fatigue faults in granular alloy EP741NP (part II)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Serial section focused ion beam tomography was performed for a three-dimensional reconstruction of the microstructure of defects associated with the formation of fatigue cracks in samples destroyed during fatigue tests. The geometric parameters of defects containing Hf, Nb, Ti, Al, and Ni identified during 3D reconstruction were determined. The morphology of individual particles is represented by a set of shapes that form flat (carpet-like) conglomerates up to tens of microns in size, which cannot be detected by non-destructive testing methods. The revealed morphological features make it possible to propose a set of measures to increase the service life of parts made of granulated heat-resistant nickel alloy EP741NP, which is an important practical result of the study.

作者简介

V. Artemov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Moscow, 119333 Russia

V. Bondarenko

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Moscow, 119333 Russia

M. Artamonov

Lyulka Experimental Design Bureau, Branch of PJSC "UEC-UMPO"

Moscow, Russia

A. Kumskov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Moscow, 119333 Russia

I. Pavlov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Moscow, 119333 Russia

E. Marchukov

Lyulka Experimental Design Bureau, Branch of PJSC "UEC-UMPO"

Moscow, Russia

A. Vasiliev

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University)

Email: a.vasiliev56@gmail.com
Moscow, 119333 Russia; Dolgoprudny, Russia

参考

  1. Павлов И.С., Артамонов М.А., Артемов В.В. и др. // Кристаллография. 2024. Т. 69. № 6. С. 927. https://doi.org/10.31857/S0023476124060027
  2. Волков А.М., Карашаев М.М., Летников М.Н. и др. // Технология металлов. 2019. № 1. С. 2. https://doi.org/10.31044/1684-2499-2019-1-0-2-8
  3. Гарибов Г.С., Кошелев В.Я., Шорошев Ю.Г. и др. // Заготовительные производства в машиностроении. 2010. № 1. С. 45.
  4. Belan J. // Mater. Today Proc. 2016. V. 3. P. 936. https://doi.org/10.1016/j.matpr.2016.03.024
  5. Ida S., Yamagata R., Nakashima H. et al. // Metals (Basel). 2022. V. 12. P. 1817. https://doi.org/10.3390/met12111817
  6. Zhao S., Xie X., Smith G.D. et al. // Mater. Sci. Eng. A. 2003. V. 355. P. 96. https://doi.org/10.1016/S0921-5093(03)00051-0
  7. Симс Ч.Т., Норман С.С., Уильям С.Х. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Т. 1. М.: Металлургия, 1995. 384 с.
  8. Трунькин И.Н., Артамонов М.А., Овчаров А.В. и др. // Кристаллография. 2019. Т. 64. С. 539. https://doi.org/10.1134/S002347611904026X
  9. Sasaki S., Fujino K., Takéuchi Y. // Proc. Jpn Acad. B. 1979. V. 55. P. 43. https://doi.org/10.2183/pjab.55.43
  10. Prostakova V., Chen J., Jak E. et al. // Calphad. 2012. V. 37. P. 1. https://doi.org/10.1016/j.calphad.2011.12.009
  11. Peng Y., Huang G., Long L. et al. // Calphad. 2020. V. 70. P. 101769. https://doi.org/10.1016/j.calphad.2020.101769
  12. Johnson B., Jones J.L. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Elsevier, 2019. 570 p. https://doi.org/10.1016/B978-0-08-102430-0.00002-4
  13. Taylor J.R., Dinsdale A.T., Hilleit M. et al. // Calphad. 1992. V. 16. P. 173. https://doi.org/10.1016/0364-5916(92)90005-I
  14. Alper A.M., McNally R.N., Ribbe P.H. et al. // J. Am. Ceram. Soc. 1962. V. 45. P. 263. https://doi.org/10.1111/j.1151-2916.1962.tb11141.x
  15. Davydov A., Kattner U.R. // J. Phase Equilibria. 1999. V. 20. P. 5. https://doi.org/10.1361/105497199770335893
  16. Chen M., Hallstedt B., Gauckler L.J. // J. Phase Equilibria. 2003. V. 24. P. 212. https://doi.org/10.1361/105497103770330514
  17. Murray J.L. // Bull. Alloy Phase Diagrams. 1986. V. 7. P. 156. https://doi.org/10.1007/BF02881555
  18. Pérez R.J., Massih A.R. // J. Nucl. Mater. 2007. V. 360. P. 242. https://doi.org/10.1016/j.jnucmat.2006.10.008
  19. Okamoto H. // J. Phase Equilibria Diffus. 2011. V. 32. P. 473. https://doi.org/10.1007/s11669-011-9935-5
  20. He K., Sun J., Tang X. // IEEE Trans. Pattern Anal. Machine Intell. 2013. V. 35. № 6. P. 1397. https://doi.org/10.1109/TPAMI.2012.213
  21. Nagajyothi G., Raghuveera E. // Int. J. Adv. Res. Electron. Commun. Eng. 2016. V. 5. P. 2362.
  22. Li Z., Zheng J., Zhu Z. et al. // IEEE Trans. Image Process. 2015. V. 24. P. 120. https://doi.org/10.1109/TIP.2014.2371234
  23. Бендат Дж., Пирсол А. Примения корреляционного и спектрального анализа. Пер. с англ. М.: Мир, 1983, 312 с.
  24. Land E.W., McMann J.J. // J. Opt. Soc. Am. 1971. V. 61. № 1. P. 1. https://doi.org/10.1364/JOSA.61.000001
  25. Jobson D.J., Rahman Z., Wodell G.A. // IEEE Trans. Image Process. 1997. V. 6. № 7. P. 965. https://doi.org/10.1109/83.597272
  26. Rahman Z., Jobson D.J., Woodel G.A. // J. Electron. Imaging. 2004. V. 13. № 1. P. 100. https://doi.org/10.1117/1.1636183
  27. Гонзалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2005. 1072 с.
  28. Limaye A. // SPIE, San Diego. 2012. V. 8506
  29. Hu D., Limaye A., Lu J. // R. Soc. Open Sci. 2020. https://doi.org/10.1098/rsos.201033

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025