New cobalt and nickel sulfates templated with N,Nʹ-dimethyletethylenediammonium cation: synthesis, crystal structures and topological features

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Crystals of new double sulfates (dmedaH2)[Co(H2O)6](SO4)2 (1) and (dmedaH2)[Ni(H2O)4(SO4)2] (2), as well as (dmedaH2)2(SO4)2⋅3H2O (3), where dmeda is N,Nʹ-dimethylethylenediamine, were obtained by isothermal evaporation. The compounds crystallize in the triclinic symmetry, space group P1, while compound 3 is characterized by the orthorhombic symmetry with the space group P212121. The crystal structure of 1 contains isolated octahedral cations [Co(H2O)6]2+ and SO42– tetrahedra, while the crystal structure of 2 contains complex anions trans-[Ni(H2O)4(SO4)2]2–. Structures of 1 and 2 are compared with the structures of double cobalt and nickel sulfates with ethylenediammonium, where the opposite case is observed. The formation of both aqua- and aquasulfate complexes is quite typical for cations of transition metals of the 3d series. While for double sulfates of transition metals with inorganic cations the hydration number depends to a greater extent on the synthesis temperature and the ionic radius of the monovalent metal, for double sulfates with organic cations the picture is more complex. The crystal structure of compound 3 can also be considered as pseudolayered, with the cationic layer formed only by the organic component, while the anionic layer also includes water molecules. The anionic layer contains cavities, the volume of which allows us to assume that under certain conditions they can be occupied by water molecules, which would correspond to the composition (dmedaH2)(SO4)⋅2H2O. Topological analysis of the obtained compounds showed that metal complexes with ethylenediammonium demonstrate a relatively high structural complexity of H-bonds with a lower complexity of structural units compared to N,N'-dimethylethylenediammonium.

Full Text

Restricted Access

About the authors

D. O. Charkin

Lomonosov Moscow State University; FRC Kola Science Centre RAS

Email: aks.crys@gmail.com

Faculty of Chemistry, Lomonosov Moscow State University

Russian Federation, 1-3 Leninskie Gory, Moscow 119991; 14 Fersman str., Apatity 184209

V. E. Kireev

FRC Kola Science Centre RAS

Email: aks.crys@gmail.com
Russian Federation, 14 Fersman str., Apatity 184209

N. V. Somov

N. I. Lobachevsky State University of Nizhny Novgorod

Email: aks.crys@gmail.com
Russian Federation, Nizhny Novgorod

D. N. Dmitriev

Lomonosov Moscow State University; FRC Kola Science Centre RAS

Email: aks.crys@gmail.com

Faculty of Chemistry, Lomonosov Moscow State University

Russian Federation, 1-3 Leninskie Gory, Moscow 119991; 14 Fersman str., Apatity 184209

A. M. Banaru

Lomonosov Moscow State University; FRC Kola Science Centre RAS

Email: aks.crys@gmail.com

Faculty of Chemistry, Lomonosov Moscow State University

Russian Federation, 1-3 Leninskie Gory, Moscow 119991; 14 Fersman str., Apatity 184209

S. M. Aksenov

FRC Kola Science Centre RAS

Author for correspondence.
Email: aks.crys@gmail.com
Russian Federation, 14 Fersman str., Apatity 184209

References

  1. Hawthorne F.C., Krivovichev S.V., Burns P.C. // Rev. Mineral. Geochem. 2000. V. 40. P. 1. https://doi.org/10.2138/rmg.2000.40.1
  2. Расцветаева Р.К., Пущаровский Д.Ю. // ВИНИТИ Итоги науки и техники. Сер. Кристаллохимия. 1989. T. 23. C. 1.
  3. Bosi F., Belardi G., Ballirano P. // Am. Mineral. 2009. V. 94. P. 74. https://doi.org/10.2138/am.2009.2898
  4. Rousse G., Tarascon J.M. // Chem. Mater. 2014. V. 26. P. 394. https://doi.org/10.1021/cm4022358
  5. Masquelier C., Croguennec L. // Chem. Rev. 2013. V. 113. P. 6552. https://doi.org/10.1021/cr3001862
  6. Naïli H., Hajlaoui F., Mhiri T. et al. // Dalton Trans. 2013. V. 42. P. 399. https://doi.org/10.1039/C2DT31300F
  7. Nkhili N.L., Rekik W., Mhiri T. et al. // Inorg. Chim. Acta. 2014. V. 412. P. 27. https://doi.org/10.1016/j.ica.2013.12.007
  8. Aksenov S.M., Yamnova N.A., Kabanova N.A. et al. // Crystals. 2021. V. 11. P. 237. https://doi.org/10.3390/cryst11030237
  9. Hatert F. // Eur. J. Mineral. 2019. V. 31. P. 807. https://doi.org/10.1127/ejm/2019/0031-2874
  10. Liu H.-K., Liao L.-B., Zhang Y.-Y. et al. // Rare Met. 2021. V. 40. P. 3694. https://doi.org/10.1007/s12598-020-01690-0
  11. McConnell D. // Am. Mineral. 1937. V. 22. P. 977.
  12. Pasero M., Kampf A.R., Ferraris C. et al. // Eur. J. Mineral. 2010. V. 22. P. 163. https://doi.org/10.1127/0935-1221/2010/0022-2022
  13. Deyneko D.V., Titkov V.V., Fedyunin F.D. et al. // Ceram. Int. 2022. V. 48. P. 24012. https://doi.org/10.1016/j.ceramint.2022.05.077
  14. Norquist A.J., Doran M.B., Thomas P.M., O’Hare D. // Dalton Trans. 2003. P. 1168. https://doi.org/10.1039/b209208e
  15. Durova E.V., Kuporev I.V., Gurzhiy V.V. // Int. J. Mol. Sci. 2023. V. 24. P. 13020. https://doi.org/10.3390/ijms241613020
  16. Smith P.A., Aksenov S.M., Jablonski S., Burns P.C. // J. Solid State Chem. 2018. V. 266. P. 286. https://doi.org/10.1016/j.jssc.2018.07.028
  17. Speer D., Salje E. // Phys. Chem. Miner. 1986. V. 13. P. 17. https://doi.org/10.1007/BF00307309
  18. McMurdie H.F., Morris M.C., DeGroot J., Swanson H.E. // J. Res. Natl. Bur. Stand. A. 1971. V. 75. P. 435. https://doi.org/10.6028/jres.075A.034
  19. Majzlan J., Marinova D., Dachs E. // RSC Adv. 2021. V. 11. P. 374. https://doi.org/10.1039/D0RA09501J
  20. Morales A.C., Cooper N.D., Reisner B.A., DeVore T.C. // J. Therm. Anal. Calorim. 2018. V. 132. P. 1523. https://doi.org/10.1007/s10973-018-7107-0
  21. Ray G. // Acta Cryst. 1967. V. 22. P. 771. https://doi.org/10.1107/S0365110X67001549
  22. Smith J., Weinberger P., Werner A. // J. En. Storage. 2024. V. 78. P. 110003. https://doi.org/10.1016/j.est.2023.110003
  23. Rajagopal R., Ajgaonkar V.R. // Monatsh. Chem. 2002. V. 133. P. 1387. https://doi.org/10.1007/s007060200112
  24. Rekik W., Naïli H., Bataille T. // J. Coord. Chem. 2015. V. 68. P. 142. https://doi.org/10.1080/00958972.2014.989223
  25. Yahyaoui S., Rekik W., Naïli H. et al. // J. Solid State Chem. 2007. V. 180. P. 3560. https://doi.org/10.1016/j.jssc.2007.10.019
  26. Rekik W., Naïli H., Mhiri T., Bataille T. J. // Chem. Cryst. 2007. V. 37. P. 147. https://doi.org/10.1007/s10870-006-9170-9
  27. Rekik W., Naïli H., Mhiri T., Bataille T. // Mater. Res. Bull. 2008. V. 43. P. 2709. https://doi.org/10.1016/j.materresbull.2007.10.024
  28. Held P. // Acta Cryst. E. 2014. V. 70. P. 235. https://doi.org/10.1107/S1600536814020704
  29. Lu J., Schlueter J.A., Geiser U. // J. Solid State Chem. 2006. V. 179. P. 1559. https://doi.org/10.1016/j.jssc.2006.02.006
  30. Bataille T., Louër D. // J. Mater. Chem. 2002. V. 12. P. 3487. https://doi.org/10.1039/B207212M
  31. Rekik W., Naïli H., Bataille T. et al. // Inorg. Chim. Acta 2006. V. 359. P. 3954. https://doi.org/10.1016/j.ica.2006.05.030
  32. Bataille T. // Acta Cryst. C. 2003. V. 59. P. m459. https://doi.org/10.1107/S0108270103021243
  33. Hajlaoui F., Naïli H., Yahyaoui S. et al. // J. Organomet. Chem. 2012. V. 700. P. 110. https://doi.org/10.1016/j.jorganchem.2011.11.023
  34. Rekik W., Loulou Nkhili N., Naïli H., Dahaoui S. // Z. Anorg. Allg. Chem. 2014. V. 640. P. 2603. https://doi.org/10.1002/zaac.201400240
  35. Charkin D.O., Banaru A.M., Ivanov S.A. et al. // Z. Anorg. Allg. Chem. 2023. V. 649. № 24. P. e202300184. https://doi.org/10.1002/zaac.202300184
  36. Charkin D.O., Banaru A.M., Dmitriev D.N. et al. // Struct. Chem. 2024. V. 35. P. 39. https://doi.org/10.1007/s11224-023-02254-5
  37. Charkin D.O., Kireev V.E., Dmitriev D.N. et al. // Struct. Chem. 2024. https://doi.org/10.1007/s11224-024-02375-5
  38. Manomenova V.L., Rudneva E.B., Voloshin A.E. // Russ. Chem. Rev. 2016. V. 85. P. 585. https://doi.org/10.1070/RCR4530
  39. Oxford Diffraction CrysAlisPro. Oxford Diffraction Ltd Abingdon Oxfordshire UK, 2009
  40. Palatinus L., Chapuis G. // J. Appl. Cryst. 2007. V. 40. P. 786. https://doi.org/10.1107/S0021889807029238
  41. Petricek V., Dusek M., Palatinus L. // Z. Krist. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
  42. Petříček V., Palatinus L., Plášil J., Dušek M. J. // Z. Krist. 2023. V. 238. № 7–8. P. 271. https://doi.org/10.1515/zkri-2023-0005
  43. Banaru D., Hornfeck W., Aksenov S., Banaru A. // CrystEngComm. 2023. V. 25. P. 2144. https://doi.org/10.1039/D2CE01542K
  44. Krivovichev S.V. // Angew. Chem. Int. Ed. 2014. V. 53. P. 654. https://doi.org/10.1002/anie.201304374
  45. Sabirov D.S., Zimina A.D., Tukhbatullina A.A. // J. Math. Chem. 2024. V. 62. P. 819. https://doi.org/10.1007/s10910-023-01566-5
  46. Banaru D.A., Aksenov S.M., Banaru A.M., Oganov A.R. // Z. Krist. 2024. V. 239. № 5–6. P. 207. https://doi.org/10.1515/zkri-2024-0062
  47. Lord E.A., Banaru A.M. // Moscow Univ. Chem. Bull. 2012. V. 67. P. 50. https://doi.org/10.3103/S0027131412020034
  48. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/10.1021/cg500498k
  49. Montgomery H., Morosin B., Natt J.J. et al. // Acta Cryst. 1967. V. 22. P. 775. https://doi.org/10.1107/S0365110X67001550
  50. Elerman Y. // Acta Cryst. C. 1988. V. 44. P. 599. https://doi.org/10.1107/S0108270187012447
  51. Gaye P.A., Sarr A.D., Gaye M. et al. // Acta Cryst. E. 2011. V. 67. P. m1046. https://doi.org/10.1107/S1600536811025682
  52. Bujak M., Frank W. // Z. Krist. 2014. V. 229. P. 147. https://doi.org/110.1515/ncrs-2014-0083
  53. Stoilova D., Wildner M. // J. Mol. Struct. 2004. V. 706. P. 57. https://doi.org/10.1016/j.molstruc.2004.01.070
  54. Healy P., Patrick J., White A. // Aust. J. Chem. 1984. V. 37. P. 1105. https://doi.org/10.1071/CH9841105
  55. Rujiwatra A., Limtrakul J. // Acta Cryst. E. 2005. V. 61. P. m1403. https://doi.org/10.1107/S1600536805019604
  56. Ben Ghozlen M.H., Daoud A., Paulus H., Pabst I. // Z. Krist. 1994. V. 209. P. 383. https://doi.org/10.1524/zkri.1994.209.4.383
  57. Chaabouni S., Kamoun S., Daoud A., Jouini T. // Acta Cryst. C. 1996. V. 52. P. 505. https://doi.org/10.1107/S0108270195011048
  58. Held P. // Acta Cryst. E. 2003. V. 59. P. m197. https://doi.org/10.1107/S1600536803004628
  59. Rekik W., Naïli H., Mhiri T., Bataille T. // Acta Cryst. E. 2009. V. 65. P. m1404. https://doi.org/10.1107/S1600536809041981
  60. Rekik W., Naïli H., Mhiri T., Bataille T. // Acta Cryst. E. 2011. V. 67. P. m1176. https://doi.org/10.1107/S1600536811030005
  61. Kim C.-H., Park C.-J., Lee S.-G. // Anal. Sci. Technol. 2006. V. 19. P. 309.
  62. Rekik W., Naïli H., Mhiri T., Bataille T. // Solid State Sci. 2009. V. 11. P. 614. https://doi.org/10.1016/j.solidstatesciences.2008.11.002
  63. O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. V. 41. P. 1782. https://doi.org/10.1021/ar800124u
  64. Banaru A.M., Banaru D.A., Aksenov S.M. // J. Struct. Chem. 2022. V. 63. P. 260. https://doi.org/10.1134/S002247662202007X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General view of the crystal structure of (dmedaH2)[Co(H2O)6](SO4)2 (1) (a), features of the local environment of the Co2+ cation (b), SO4 tetrahedron (c) and the organic cation dmedaH22+ (d).

Download (327KB)
3. Fig. 2. General view of the crystal structure of (dmedaH2)[Ni(H2O)4(SO4)2] (2) (a), features of the local environment of the Ni2+ cation (b), SO4 tetrahedron (c) and the organic cation dmedaH22+ (d).

Download (369KB)
4. Fig. 3. General view of the crystal structure of (dmedaH2)2(SO4)2·3H2O (3) (a), features of the local environment of the organic cation dmedaH22+ (b).

Download (243KB)
5. Fig. 4. Weighted Hcomb, Hedge and Hmix contributions to HSBUnet for the crystal structures of ethylenediamonium (eda) and N,N-diethylenediammonium (dmeda) sulfates with or without Co(II), Ni(II) cations (including hydrates).

Download (70KB)

Copyright (c) 2025 Russian Academy of Sciences