Linear and nonlinear dielectric response of vdf60/tr40 copolymer in the vicinity of ferroelectric phase transition

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of the bias electric field E= (0–10 kV/cm) on the dielectric properties of the VDF60/Tr40 copolymer was studied within the temperature range of 20–110°C. It was found that the dielectric nonlinearity De, is negative in the polar phase and becomes positive above the Curie temperature (TC). The increase in TC under the field E= is not uniform. At E= < Ec (Ec is the threshold field), the Curie temperature is practically independent of E=. At E= > Ec, the increase of TC is observed. The presence of the threshold field indicates the presence of sources of random electric fields in the material under study. It is assumed that they are responsible for the smearing of the ferroelectric phase transition.

全文:

受限制的访问

作者简介

K. Verkhovskaya

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: l_korotkov@mail.ru
俄罗斯联邦, Moscow

M. Pankova

Voronezh Institute of the Ministry of Internal Affairs of the Russian Federation

Email: l_korotkov@mail.ru
俄罗斯联邦, Voronezh

I. Popov

Voronezh State Technical University

Email: l_korotkov@mail.ru
俄罗斯联邦, Voronezh

L. Korotkov

Voronezh State Technical University

Email: l_korotkov@mail.ru
俄罗斯联邦, Voronezh

参考

  1. Forukawa T. // Phase Transitions. 1989. V. 18. P. 143. https://doi.org/10.1080/01411598908206863
  2. Koizumi N., Hagino J., Murata Y. // Ferroelectrics. 1981. V. 32. P. 141. https://doi.org/10.1080/00150198108238685
  3. Лущейкин Г.А. Полимерные пьезоэлектрики. М.: Химия, 1990. 176 с.
  4. Кочервинский В.В. // Успехи химии. 1999. Т. 68. № 10. С. 904. https://doi.org/10.1070/RC1999v068n10ABEH000446
  5. Кочервинский В.В. Применение сегнетоэлектрических полимеров в технике и медицине. Palmarium Academic Publishing, 2021. 194 с.
  6. Xu Q., Gao X., Zhao S. et al. // Adv. Mater. 2021. V. 33. P. 2008452. https://doi.org/10.1002/adma.202008452
  7. Zhu L., Qing Q. // Macromolecules. 2012. V. 45. P. 2937. https://doi.org/10.1021/ma2024057
  8. Budaev A.V., Belenkov R.N., Emelianov N.A. // Condens. Matter. 2019. V. 4. № 2. P. 56. https://doi.org/10.3390/CONDMAT4020056
  9. Koizumi N., Haikawa N., Habuca H. // Ferroelectrics. 1984. V. 57. P. 99. http://dx.doi.org/10.1080/00150198408012756
  10. Yagi T., Tatemoto M., Sako J. // Polymer J. 1980. V. 12. № 4. P. 209. https://doi.org/10.1295/polymj.12.209
  11. Верховская К.А., Коротков Л.Н., Караева О.А. // Кристаллография. 2019. Т. 64. № 4. С. 586. https://doi.org/10.1134/S0023476119040271
  12. Verkhovskaya K.A., Popov I.I., Korotkov L.N. // Ferroelectrics. 2020. V. 567. № 1. P. 223. https://doi.org/10.1080/00150193.2020.1791608
  13. Verkhovskaya K.A., Popov I.I., Tolstykh N.A., Korotkov L.N. // Ferroelectrics. 2022. V. 591. № 1. P. 211. https://doi.org/10.1080/00150193.2022.2041940
  14. Смоленский Г.А., Боков В.А., Исупов В.А. и др. Физика сегнетоэлектрических явлений / Под ред. Смоленского Г.А. Л.: Наука, 1985. 396 с.
  15. Tashiro K., Takano K., Kobayashi M. et al. // Ferroelectrics. 1984. V. 57. P. 297. http://dx.doi.org/10.1080/00150198408012770
  16. Korotkov L.N. // Phys. Status Solidi. B. 2000. V. 222. № 2. P. R1. https://doi.org/10.1002/1521-3951(200011)222:23.0.CO;2-B
  17. Ламперт М., Марк П. Инжекционные токи в твердых телах. М.: Мир, 1973. 416 с.
  18. Коротков Л.Н., Гриднев С.А., Климентова Т.И. // Изв. РАН. Сер. физ. 2004. Т. 68. С. 982.
  19. Дороговцев С.Н. // ФТТ. 1982. Т. 24. Вып. 6. C. 1661.
  20. Glinchuk M.D., Stephanovich V.A. // J. Phys. Condens. Matter. 1998. V. 10. Р. 11081. https://doi.org/10.1088/0953-8984/10/48/027
  21. Stephanovich V.A. // Ferroelectrics. 2000. V. 236. P. 209. https://doi.org/10.1080/00150190008016053

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Temperature dependences of e obtained during heating and cooling of the sample (1), and the dependence of e–1 on temperature (2). Straight lines are drawn in accordance with formulas (1a) and (1b). Insert – dependence of e–1 on (T – Tm)2.

下载 (94KB)
3. Fig. 2. Temperature dependences of e obtained during heating (1a–3a) and cooling of the sample (1b–3b) at different values ​​of the electric bias field E= 0 (1a and 1b), 7.5 (2a and 2b) and 10 (3a and 3b) kV/cm.

下载 (118KB)
4. Fig. 3. Dependence De(T) during heating and cooling of the sample.

下载 (80KB)
5. Fig. 4. Dependences ТСh(E=) (curve 1) and ТСc(E=) (curve 2).

下载 (63KB)

版权所有 © Russian Academy of Sciences, 2024