Tomographic methods for studying the upper atmosphere and near-Earth space: current state and development prospects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review examines the physical and mathematical formulations of the tomography problem in relation to remote sensing of the atmosphere and near-Earth space. Special attention is given to ionospheric sensing using satellite beacon signals from low-orbit (Parus/Transit/Cassiope, etc.), medium-orbit, and high-orbit (GPS/GLONASS and new global satellite navigation systems) satellites. The capabilities and limitations of 2D low-orbit and 4D high-orbit ionospheric radio tomography methods are discussed, along with the results of radiotomographic reconstructions of electron density distribution at various latitudes under both natural and artificial disturbances. A separate focus is placed on studying small-scale ionospheric irregularities based on satellite signal amplitude scintillation data, as well as challenges in implementing such sensing schemes at high latitudes using GPS/GLONASS signals. Besides, the prospects of tomographic systems for upper atmosphere sensing are discussed, considering the significant reduction in the number of low-orbit satellites, the potential installation of satellite beacons on new platforms (CubeSat), and the use of radio tomography methods in ultraviolet tomography of the upper atmosphere. The first results obtained using the dual-frequency (150/400 MHz) coherent signal transmitter MAYAK onboard the satellites of the Russian “Ionosphere” project are presented.

Full Text

Restricted Access

About the authors

A. M. Padokhin

Lomonosov Moscow State University; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: achernyshov@cosmos.ru

Lomonosov Moscow State University, Physics Department

Russian Federation, Moscow; Troisk, Moscow

A. A. Chernyshov

Space Research Institute of the Russian Academy of Sciences

Author for correspondence.
Email: achernyshov@cosmos.ru
Russian Federation, Moscow

E. S. Andreeva

Lomonosov Moscow State University

Email: achernyshov@cosmos.ru

Physics Department

Russian Federation, Moscow

M. O. Nazarenko

Lomonosov Moscow State University

Email: achernyshov@cosmos.ru

Physics Department

Russian Federation, Moscow

S. E. Andreevsky

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences; Space Research Institute of the Russian Academy of Sciences

Email: achernyshov@cosmos.ru
Russian Federation, Troisk, Moscow; Moscow

M. M. Mogilevsky

Space Research Institute of the Russian Academy of Sciences

Email: achernyshov@cosmos.ru
Russian Federation, Moscow

References

  1. Зеленый Л.М., Веселовский И.С. Плазменная гелиогеофизика. Москва: Физматлит, 2008.
  2. Kelley M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics. 2nd ed. San Diego: Academic Press, 2009.
  3. Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. М.: Наука, 1988.
  4. Гуревич В. Нелинейные явления в ионосфере // Успехи физических наук. 2007. Т. 177. № 11. С. 1145–1177.
  5. Streltsov A.V., Berthelier J.-J., Chernyshov A.A. et al. Past, Present and Future of Active Radio Frequency Experiments in Space // Space Science Reviews. 2018. V. 214. Iss. 118. P. 1–30. https://doi.org/10.1007/s11214-018-0549-7
  6. Молчанов А. Низкочастотные волны и индуцированные излучения в околоземной плазме. Москва: Наука, 1985.
  7. Петрукович А.А., Могилевский М.М., Чернышов А.А. и др. Некоторые аспекты магнитосферно-ионосферных связей // Успехи физических наук. 2015. Т. 185. № 6. С. 649–654. https://doi.org/10.3367/UFNe.0185.201506i.0649
  8. Альперт Я.Л. Распространение радиоволн и ионосфера. Москва: Изд-во АН СССР, 1960.
  9. Казаринов Ю.М. Радиотехнические системы. Москва: Академия, 2008. 592 с.
  10. Манаев В.И. Основы радиоэлектроники. Москва: Радио и связь, 1990. 511 с.
  11. Альперт Я.Л. Статистический характер структуры ионосферы // Успехи физических наук. 1953. Т. 49. № 1. С. 49–91.
  12. Ясюкевич Ю.В., Сыроватский С.В., Падохин А.М. и др. Точность позиционирования GPS в различных режимах при активном воздействии на ионосферу мощным КВ-излучением нагревного стенда СУРА // Известия высших учебных заведений. Радиофизика. 2019. Т. 62. № 12. С. 906–919.
  13. Astafyeva E., Yasyukevich Y., Maksikov A. et al. Geomagnetic storms, superstorms, and their impacts on GPS-based navigation systems // Space Weather. 2014. V. 12. Iss. 7. P. 508–525. https://doi.org/10.1002/2014SW001072
  14. Chernyshov A. A., Miloch W. J., Jin Y. et al. Relationship between TEC jumps and auroral substorm in the high-latitude ionosphere // Scientific Reports. 2020. V. 10. Iss. 6363. https://doi.org/10.1038/s41598-020-63422-9
  15. Захаров В.И., Чернышов А.А., Милох В. и др. Влияние ионосферы на параметры навигационных сигналов GPS во время геомагнитной суббури // Геомагнетизм и аэрономия. 2020. Т. 60. № 6. С. 769–782. https://doi.org/10.31857/S0016794020060152
  16. Afraimovich E.L., Astafyeva E.I., Demyanov V.V. et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena // J. Space Weather and Space Climate. 2013. V. 3. Iss. A27. https://doi.org/10.1051/swsc/2013049
  17. Kotova D.S., Sinevich A.A., Chernyshov A.A. et al. Strong turbulent flow in the subauroral region in the Antarctic can deteriorate satellite-based navigation signals // Scientific Reports. 2025. V. 15. Iss. 3458. https://doi.org/10.1038/s41598-025-86960-6
  18. Patil A.S., Nade D.P., Taoti A. et al. A Brief Review of Equatorial Plasma Bubbles // Space Science Reviews. 2023. V. 219. Iss. 16. P. 1–25. https://doi.org/10.1007/s11214-023-00958-y
  19. Otsuka Y. Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere // Progress in Earth and Planetary Science. 2018. V. 5. Iss. 57. P. 1–15. https://doi.org/10.1186/s40645-018-0212-7
  20. Мандельштам Л.И., Папалекси Н.Д. Новейшие исследования распространения радиоволн вдоль земной поверхности. М.: Гостехиздат, 1945.
  21. Альперт Я.Л. Распространение электромагнитных волн и ионосфера. Москва: Наука, 1972.
  22. Куницын В.Е., Терещенко Е.Д., Андреева Е.С. Радиотомография ионосферы. Москва: Физматлит, 2007.
  23. Iyer H., Hirsava K. Seismic Tomography: Theory and Practice. London: Chapman and Hall, 1993.
  24. Munk W., Worcester P., Wunsch C. Ocean Acoustic Tomography. Cambridge: Cambridge University Press, 1995.
  25. Davies K. Ionospheric Radio. London: Peter Peregrinus Ltd, 1990.
  26. Austen J.R., Franke S.J., Liu C.H. Ionospheric imaging using computerized tomography // Radio Science. 1988. V. 23. Iss. 3. P. 299–307.
  27. Andreeva E.S., Galinov A.V., Kunitsyn V.E. et al. Radiotomographic reconstruction of ionization dip in the plasma near the Earth // JETP Letters. 1990. V. 52. Iss. 3. P. 145–148.
  28. Pryse S.E. Radio Tomography: A New Experimental Technique // Surveys in Geophysics. 2003. V. 24. Iss. 1. P. 1–38.
  29. Bust G.S., Mitchell C.N. History, current state, and future directions of ionospheric imaging // Reviews of Geophysics. 2008. V. 46. Iss. RG1003.
  30. Yizengaw E., Moldwin M.B., Dyson P.L. et al. First tomographic image of ionospheric outflows // Geophysical Research Letters. 2006. V. 33. Iss. L20102.
  31. Prol F., Hoque M., Ferreira A. Plasmasphere and topside ionosphere reconstruction using METOP satellite data during geomagnetic storms // J. Space Weather and Space Climate. 2021. V. 11. Iss. 5.
  32. Tereshchenko E.D., Kozlova M.O., Kunitsyn V.E. et al. Statistical tomography of subkilometer irregularities in the high-latitude ionosphere // Radio Science. 2004. V. 39. Iss. RS1S35.
  33. Dymond K.F., Budzien S.A., Hei M.A. Ionospheric-thermospheric UV tomography: 1. Image space reconstruction algorithms // Radio Science. 2017. V. 52. P. 338–356.
  34. Hei M.A., Budzien S.A., Dymond K.F. et al. Ionospheric-thermospheric UV tomography: 3. A multisensor technique for creating full-orbit reconstructions of atmospheric UV emission // Radio Science. 2017. V. 52. P. 896–916.
  35. Nesterov I.A., Kunitsyn V.E. GNSS radio tomography of the ionosphere: The problem with essentially incomplete data // Advances in Space Research. 2011. V. 47. Iss. 10. P. 1789–1803.
  36. Mannucci A.J., Wilson B.D., Yuan D.N. et al. A global mapping technique for GPS-derived ionospheric total electron content measurements // Radio Science. 1998. V. 33. Iss. 3. P. 565–582.
  37. Fridman S.V., Nickisch L.J., Hausman M. et al. Assimilative model for ionospheric dynamics employing delay, Doppler, and direction of arrival measurements from multiple HF channels // Radio Science. 2016. V. 51. P. 176–183.
  38. Kotova D., Ovodenko V., Yasyukevich Y. et al. Efficiency of updating the ionospheric models using total electron content at mid- and sub-auroral latitudes // GPS Solutions. 2020. V. 24. Iss. 25.
  39. Foster J.C., Buonsanto M.J., Holt J.M. et al. Russian-American tomography experiment // International Journal of Imaging Systems and Technology. 1994. V. 5. Iss. 2. P. 148–159.
  40. Yeh K.C., Franke S.J., Andreeva E.S. et al. An investigation of motions of the equatorial anomaly crest // Geophysical Research Letters. 2001. V. 28. Iss. 24. P. 4517–4520.
  41. Kunitsyn V., Andreeva E., Frolov V. et al. Sounding of HF heating induced artificial ionospheric disturbances by navigational satellite radio transmissions // Radio Science. 2012. V. 47. Iss. RS0L15.
  42. Андреева Е.С., Гохберг М.Б., Куницын В.Е. и др. Радиотомографическая регистрация возмущений ионосферы от наземных взрывов // Косм. исслед. 2001. Т. 39. № 1. C. 13–17.
  43. Куницын В.Е., Нестеров И.А., Шалимов С.Л. Мегаземлетрясение в Японии 11 марта 2011 г.: регистрация ионосферных возмущений по данным GPS // Письма в ЖЭТФ. 2011. Т. 94 № 8. С. 657–661.
  44. Косов А.С., Чернышов A.A., Могилевский М.М. и др. Космический эксперимент по измерению ионосферных задержек сигнала ИЗРС (ионосферные задержки радиосигнала) // Исследование Земли из космоса. 2018. № 9. С. 1282–1290. https://doi.org/10.31857/S020596140003364–1
  45. Bernhardt P.A., Dymond K.F., Picone J.M. et al. Improved radio tomography of the ionosphere using EUV/optical measurements from satellites // Radio Science. 1997. V. 32. Iss. 5. P. 1965–1972.
  46. Mitchell C.N., Spencer P.S. A three-dimensional time-dependent algorithm for ionospheric imaging using GPS // Annales Geophysicae. 2003. V. 46. P. 687–696.
  47. Scherliess L., Schunk R.W., Sojka J.J. et al. Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation // J. Geophysical Research. 2006. V. 111. Iss. A11315.
  48. Куницын В.Е., Терещенко Е.Д., Андреева Е.С. и др. Спутниковое радиозондирование и радиотомография ионосферы // Успехи физических наук. 2010. Т. 180. С. 548–553. https://doi.org/10.3367/UFNr.0180.201005k.0548
  49. Chernyshov A.A., Chugunin D.V., Mogilevsky M.M. et al. Studies of the ionosphere using radiophysical methods on ultra-small spacecrafts // Acta Astronautica. 2020. V. 167. P. 455–459. https://doi.org/10.1016/j.actaastro.2019.11.031
  50. Чернышов А.А., Чугунин Д.В., Могилевский М.М. и др. Подходы к исследованию мультимасштабной структуры ионосферы с использованием наноспутников // Геомагнетизм и аэрономия. 2016. Т. 56. № 1. С. 77–85. https://doi.org/10.7868/S0016794016010041
  51. Чернышов А.А., Чугунин Д.В., Могилевский М.М. и др. Изучение неоднородной структуры ионосферы при помощи одновременных измерений наноспутниками стандарта CubeSat // Известия ВУЗов. Приборостроение. 2016. Т. 59. № 6. С. 443–449.
  52. Attrill G., Nicholas A., Routledge G. et al. Coordinated Ionospheric Reconstruction CubeSat Experiment (CIRCE), In situ and Remote Ionospheric Sensing (IRIS) suite // J. Space Weather and Space Climate. 2021. V. 11. Iss. 16.
  53. Petrukovich A., Моgilevskii M., Kozlov I. et al. Monitoring of Physical Processes in Upper Atmosphere, Ionosphere and Magnetosphere in Ionosphere Space Missions // EPJ Web of Conferences. 2021. V. 254. P. 02010. https://doi.org/10.1051/epjconf/202125402010
  54. Андреева Е.С., Назаренко М.О., Нестеров И.А., и др. Использование одноточечного приема сигналов низкоорбитальных спутниковых радиомаяков для локальной оценки ионосферных параметров // Изв. вузов. Радиофизика. 2020. Т. 63. № 11. C. 942–957.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of conducting radio tomographic (RT) experiments on sounding the upper atmosphere and NES

Download (19KB)
3. Fig. 2. Scheme for conducting tomographic experiments on probing the thermosphere in the UV range (a) and the corresponding geometry of the probing beams (b) [33]

Download (26KB)
4. Fig. 3. Comparison of data from incoherent scatter radar (top) and RT (bottom) during the geomagnetic storm of 4.11.1993

Download (41KB)
5. Fig. 4. Reconstruction of the distribution of electron concentration in the ionosphere in middle and high latitudes, obtained from the data of the Russian RT chain

Download (25KB)
6. Fig. 5. Amplitude scintillations of the low-orbit satellite signal for northern receivers of the Russian RT chain (left) and reconstruction of the dispersion of electron density fluctuations (right) [32]

Download (26KB)
7. Fig. 6. Reconstruction of the distribution of electron concentration in the ionosphere in the region of the equatorial anomaly

Download (22KB)
8. Fig. 7. Reconstruction of the distribution of electron concentration in the ionosphere above the Sura stand during the period of the HF heating experiments

Download (26KB)
9. Fig. 8. Distribution of sTEC over Europe during the geomagnetic storm of October–November 2003 based on GNSS radio sounding data

Download (60KB)
10. Fig. 9. Wave disturbances in the ionosphere after the Tohoku earthquake according to GNSS data

Download (41KB)
11. Fig. 10. RT reconstruction of the electron concentration distribution in the plasmasphere [30]

Download (51KB)
12. Fig. 11. Example of combined RT and RZ reconstruction in the Taiwan area

Download (24KB)
13. Fig. 12. An example of comparison of UV tomography and incoherent scatter radar data. Here θ is the phase angle of the satellite orbit, measured from the point of its intersection with the equator on the dayside of the Earth [34]

Download (78KB)
14. Fig. 13. Schematic representation of the arrangement of the Ionosfera-M satellites in orbits (a); the relative position of the planes of the satellites’ orbits in local magnetic time (b)

Download (24KB)
15. Fig. 14. The Ionosfera-M satellite in the flight configuration with the structural elements and antennas deployed. The long (light) electrodes are the LAERT ionosonde antennas. The flat structure of 4 elements is the solar battery. A rod extends upward from the satellite, on which the electric and magnetic VLF antennas are mounted. The antenna of the MAYAK device is directed downward.

Download (26KB)
16. Fig. 15. Observation data of signals from the MAYAK instrument of the Ionosphera-M satellite at the MSU receiving station on 03.II.2025 06:06 UT. Left (top to bottom): signal spectrum for the 400 MHz channel, quadrature components and signal amplitude in the 150 MHz channel. On the right are the trajectories of the subionospheric points of the satellite at the heights of the F- (solid line) and E-layer (dashed line) of the ionosphere.

Download (58KB)
17. Fig. 16. Left: relative tilted sTEC according to the data from the Moscow State University receiving station and the Ionosfera-M satellite flyby on 03.II.2025 06:06 UT (blue line) compared to the sTEC data according to the NeQuick2 model (orange line). Right: electron density distribution along the Moscow meridian during this flyby according to the NeQuick2 model (top panel) and the model corrected by observational data (bottom panel)

Download (39KB)

Copyright (c) 2025 Russian Academy of Sciences