The influence of jump conditions in conjugate variables on the multiorbit spacecraft transfers with switching the low thrust off in the Earth's shadow
- 作者: Akhmetshin R.Z.1
-
隶属关系:
- Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
- 期: 卷 63, 编号 3 (2025)
- 页面: 259-274
- 栏目: Articles
- URL: https://modernonco.orscience.ru/0023-4206/article/view/689516
- DOI: https://doi.org/10.31857/S0023420625030045
- EDN: https://elibrary.ru/PZPCME
- ID: 689516
如何引用文章
详细
Transfers in the central Newtonian field to the geostationary orbit are considered under the assumption that low thrust becomes zero when spacecraft with solar panels enters the Earth’s shadow. Using the maximum principle, the two-point boundary value problem is formed. It includes the conditions for optimal intersection of the shadow boundaries, the so called jump conditions in conjugate variables. Then the influence of jump conditions on the two-point boundary value problem solutions is investigated. Calculations for the flights of spacecraft with initial mass 5550 kg and thrust 0.55 N (initial acceleration 0.1 mm/s2) from the initial orbit with inclination 13° and the height of perigee 9.2 Mm and of apogee 76.8 Mm were done. They showed that if the argument of pericenter is equal to 0° and the longitude of the ascending node Ω0 = 180°, the difference in the propellant cost for two trajectories – with or without taking into account the jump conditions – does not exceed 0.15 % (in comparison with “nominal” trajectories, i.e., transfers without zeroing the thrust), and may be less than 0.01 % for some values of initial time. For other values of Ω0, the difference may be greater than 30 %. It was discovered also that the two-point boundary value problem may have several solutions. They differ from each other by the set of orbits crossing the Earth’s shadow.
全文:

作者简介
R. Akhmetshin
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: axmetro@yandex.ru
俄罗斯联邦, Moscow
参考
- Shirazi A., Ceberio J., Lozano J.A. Spacecraft trajectory optimization: A review of models, objectives, approaches and solutions // Progress in Aerospace Sciences. 2018. V. 102. P. 76–98.
- Graham K.F., Rao A.V. Minimum-Time Trajectory Optimization of Low-Thrust Earth-Orbit Transfers with Eclipsing // J. Spacecraft and Rockets. 2016. V. 53. Iss. 2. P. 289–303. https://doi.org/10.2514/1.A33416
- Wang Y., Topputo F. Indirect Optimization for Low-Thrust Transfers with Earth-Shadow Eclipses // Advances in the Astronautical Sciences AAS/AIAA Spaceflight Mechanics. 2021. V. 176.
- Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В. и др. Математическая теория оптимальных процессов. М.: Наука, 1976.
- Ferrier Ch., Epenoy R. Optimal control for engines with electro-ionic propulsion under constraint of eclipse // Acta Astronautica. 2001. V. 48. Iss. 4. P. 181–192. https://doi.org/10.1016/S0094-5765(00)00158-2
- Woollands R., Taheri E. Optimal Low-Thrust Gravity Perturbed Orbit Transfers with Shadow Constraints // The 2019 AAS/AIAA Astrodynamics Specialist Conference. Portland, Maine. 2019.
- Cerf M. Fast Solution of Minimum-Time Low-Thrust Transfer with Eclipses // Proc. Institution of Mechanical Engineers. Part G: J. Aerospace Engineering. 2019. V. 233. Iss. 7. P. 2699–2714. https://doi.org/10.1177/0954410018785971
- Pontani M., Corallo F. Optimal Low-Thrust Lunar Orbit Transfers with Shadowing Effect Using a Multiple-Arc Formulation // Acta Astronautica. 2022. V. 200. Iss. 11. P. 549–561.
- Pontani M., Corallo F. Optimal Low-Thrust Earth Orbit Transfers with Eclipses Using Indirect Heuristic Approaches // J. Guidance, Control and Dynamics. 2024. V. 47. Iss. 5. P. 857–873. https://doi.org/10.2514/1.G007797
- Ахметшин Р.З. Плоская задача оптимального перелета космического аппарата с малой тягой с высокоэллиптической орбиты на геостационар // Космич. исслед. 2004. T. 42. № 3. C. 248–259; Akhmetshin R.Z. Planar Problem of an Optimal Transfer of a Low-Thrust Spacecraft from High-Elliptic to Geosynchronous Orbit. Cosmic Research. 2004. V. 42. Iss. 3. P. 238–249.
- Ахметшин Р.З. Многовитковые перелеты на геостационарную орбиту с обнулением малой тяги в области тени // Космич. исслед. 2020. T. 58. № 4. C. 321–330. https://doi.org/10.31857/S0023420620040019; Akhmetshin R.Z. Multiorbit Transfers to a Geostationary Orbit with Switching Low Thrust Off in the Shadow Region // Cosmic Research. 2020. V. 58. Iss. 4. P. 285–294). https://doi.org/10.1134/S0010952520040012
- Ахметшин Р.З. Влияние возмущений при многовитковых перелетах на геостационарную орбиту // Космич. исслед. 2021. T. 59. № 5. C. 377–384. https://doi.org/10.31857/S0023420621050010; Akhmetshin R.Z. The Influence of Disturbances during Multiturn Transfer to a Geostationary Orbit // Cosmic Research. 2021. V. 59. Iss. 5. P. 328–334). https://doi.org/10.1134/S0010952521050014
- Петухов В.Г. Оптимизация многовитковых перелетов между некомпланарными эллиптическими орбитами // Космич. исслед. 2004. Т. 42. № 3. C. 260–279; Petukhov V.G. Optimization of multi-orbit transfers between noncoplanar elliptic orbits // Cosmic Research. 2004. V. 42. Iss. 3. P. 250–268
- Петухов В.Г. Квазиоптимальное управление с обратной связью для многовиткового перелета с малой тягой между некомпланарными эллиптической и круговой орбитами // Космич. исслед. 2011. Т. 49. № 2. С. 128–137; Petukhov V.G. Quasioptimal control with feedback for multiorbit low-thrust transfer between noncoplanar elliptic and circular orbits // Cosmic Research. 2011. V. 49. Iss. 2. P. 121–130.
- Caillau J.B., Gergaud J., Noailles J. 3D Geosynchronous Transfer of a Satellite: Continuation on the Thrust // J. Optimization Theory and Applications. 2003. V. 118. Iss. 3. P. 541–565.
- Ким В.П., Гниздор Р.Ю., Грдличко Д.П. и др. Разработка стационарного плазменного двигателя СПД-100Вт с повышенной тягой // Космич. исслед. 2019. T. 57. № 5. C. 323–331. https://doi.org/10.1134/S0023420619050030
补充文件
