Radiation-protective properties of polymer composite material in the ISS cabin according to thermoluminescent and solid-state track detectors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents measurement data obtained in the space experiment “Shielding Composite” by thermoluminescent and solid-state track detectors. A cylindrical container made of a composite shielding material based on fluoroplastic (1 cm thick, density 4.05 g/cm3) was installed in the left cabin of the International Space Station (ISS) Service Module. The measurement data were obtained for the period from February 21 to September 19, 2022, which falls at the growth phase of the solar activity cycle. The shielding effect of the composite material was determined as the ratio of doses received outside and inside the container, and according to measured data, it was 1.33 ± 0.08 for the absorbed dose and 1.29 ± 0.07 for the dose equivalent. This effect is mainly due to a decrease in the contribution to the dose from the Earth's radiation belts, which corresponds to the results of calculations carried out by the ray tracing method for the detector locations.

Full Text

Restricted Access

About the authors

R. V. Tolochek

Institute of biomedical problems of the Russian Academy of Sciences

Email: shurshakov@imbp.ru
Russian Federation, Moscow

V. I. Pavlenko

Belgorod State Technological University Named after V.G. Shoukhov

Email: shurshakov@imbp.ru
Russian Federation, Belgorod

N. I. Cherkashina

Belgorod State Technological University Named after V.G. Shoukhov

Email: shurshakov@imbp.ru
Russian Federation, Belgorod

O. A. Ivanova

Institute of biomedical problems of the Russian Academy of Sciences

Email: shurshakov@imbp.ru
Russian Federation, Moscow

D. A. Kartashov

Institute of biomedical problems of the Russian Academy of Sciences

Email: shurshakov@imbp.ru
Russian Federation, Moscow

I. S. Kartsev

Institute of biomedical problems of the Russian Academy of Sciences

Email: shurshakov@imbp.ru
Russian Federation, Moscow

V. A. Shurshakov

Institute of biomedical problems of the Russian Academy of Sciences

Author for correspondence.
Email: shurshakov@imbp.ru
Russian Federation, Moscow

References

  1. Мирошниченко Л.И., Петров В.М. Динамика радиационных условий в космосе. М.: Энергоатомиздат, 1985. 148 с.
  2. Модель космоса / под ред. М.И. Панасюка, Л.С. Новикова – Т. 1: Физические условия в космическом пространстве. М.: Книжный дом “Университет”, 2007. 872 с.
  3. Lobascio C., Briccarello M., Destefanis R. et al. Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures // Health Physics. 2008. V. 94(3). P. 242–247.
  4. Карташов Д.А., Толочек Р.В., Шуршаков В.А. и др. Расчет радиационных нагрузок в отсеке космической станции при использовании дополнительной защиты // Авиакосм. и экол. мед. 2013. Т. 47. № 6. С. 61–66.
  5. Bonda D.K., Goddarda B., Singleterry Jr.R.C. et al. Evaluating the effectiveness of common aerospace materials at lowering the whole body effective dose equivalent in deep space // Acta Astronautica. 2019. V. 165. P. 68–95.
  6. Шафиркин А.В., Григорьев Ю.Г. Межпланетные и орбитальные космические полеты. Радиационный риск для космонавтов. Радиобиологическое обоснование. М.: ЗАО “Издательство“Экономика”, 2009. 639 с.
  7. Патент на изобретение РФ № 2748157, МПК – 2017.01 G21F 1/12; Полимерный нанокомпозит для защиты от космического воздействия и способ его получения / Павленко В.И., Шкаплеров А.Н., Курицын А.А., Черкашина Н.И., Попова Е.В, Ястребинский Р.Н.; заявители и патентообладатели: Белгород. гос. технол. ун-т им. В.Г. Шухова и Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина; заявка № 2020134472, заявлено: 20.10.2020 г.; опубликовано: 20.05.2021 г., Бюл. 14.
  8. Павленко В.И., Черкашина Н.И., Попова Е.В. и др. Исследование радиационно-защитных свойств композиционного материала на РС МКС // Материалы XV Международной научно-практической конференции “Пилотируемые полеты в космос”. Московская обл., Звездный городок, Россия. 2023. С. 156–157.
  9. Павленко В.И., Черкашина Н.И., Курицын А.А. и др. Высокоэффективный конструкционный полимерный материал для защиты от космической радиации // Пилотируемые полеты в космос. 2022. № 2(43). C. 105–115.
  10. Shkaplerov A.N., Cherkashina N.I., Pavlenko V.I. et al. Changes in the Vickers hardness, wettability, structural and mechanical properties of the “shielding composite” under the exposure to cosmic radiation // Engineering Failure Analysis. 2023. V. 152. Art.ID. 107470.
  11. Сабо Б., Сабо П.П., Вагвелди Е. и др. Универсальный прибор для измерения термолюминесцентных материалов // Космическое приборостроение. М.: Наука, 1982. С. 201–204.
  12. Акатов Ю.А., Архангельский В.В., Бенгин В.В. и др. Исследование закономерностей формирования радиационных полей в теле человека и в отсеках орбитальной станции в ходе космического полета // Космонавтика и ракетостроение. 2007. № 49. С. 71–84.
  13. Inozemtsev K.O., Kodaira S., Shurshakov V.A et al. Etched track detector methods for the identification of target nuclear fragments in cosmic radiation and accelerator proton beams // Radiation Measurements. 2021. V. 140. Art. ID. 106505.
  14. Kodaira S., Konishi T., Kurano M. et al. On the use of CR-39 PNTD with AFM analysis in measuring proton-induced target fragmentation particles // Nuclear Instruments and Methods in Physics Research. Section B. 2015. V. 349. P. 163–168.
  15. Pálfalvi J.K. Fluence and dose of mixed space radiation by SSNTDs achievements and constraints // Radiation Measurements. 2009. V. 44. Iss. 9–10. P. 724–728.
  16. Inozemtsev K.O., Kushin V.V., Strádi A. et al. Measurement of different components of secondary radiation onboard International Space Station by means of passive detectors // Radiation Protection Dosimetry. 2018. V. 181. Iss. 4. P. 412–417. https://doi.org/10.1093/rpd/ncy043
  17. Kodaira S., Morishige K., Kitamura H. et al. A performance test of a new high-surface-quality and high-sensitivity CR-39 plastic nuclear track detector – TechnoTrak // Nuclear Instruments and Methods in Physics Research. Section B. 2016. V. 383. P. 129–135.
  18. Yasuda N., Namiki K., Honma Y. et al. Development of a high speed imaging microscope and new software for nuclear track detector analysis // Radiation Measurements. 2005. V. 40. Iss. 2–6. P. 311–315.
  19. Kartashov D.A., Shurshakov V.A. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method // Acta Astronautica. 2018. V. 144. P. 320–330.
  20. Коломенский А.В. Характеристики поля излучений в космосе // Проблемы космической биологии / под ред. А. М. Уголева. Л.: Наука, 1989. Т. 60. С. 122–125.
  21. Dudkin V.E., Potapov Yu.V. Doses From Galactic Cosmic Ray Particles Under Spacecraft Shielding // Nucl.Tracks Radiat. Meas. 1992. V. 20. Iss. 1. P. 33–39.
  22. Nikezic D., Yu K.N. Formation and growth of tracks in nuclear track materials // Materials Science and Engineering R. 2004. V. 46. P. 51–123.
  23. ICRP Publication 60. The 1990 Recommendations of the International Commission on Radiological Protection // Annuals of ICRP. 1991. V. 21. Iss. 1–3. P. 1–202.
  24. Kodaira S., Tolochek R.V., Ambrožová I. et al. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters // Advances in Space Research. 2014. V. 53. Iss. 1. P. 1–7.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Stacks with assemblies of passive detectors and their location on the wall of the cabin

Download (79KB)
3. Fig. 2. Geometric model of the protection of passive detector assemblies: (a) – container inside the module; (b) – container against the background of the porthole; (c) – display of the ray tracing result for the container inside the module

Download (31KB)
4. Fig. 3. Left: tracks of cosmic charged particles of different origins (primary and secondary); right: a typical example of the result of track pattern recognition using the SEIKO® PitFit v. 2.0 program with the indication of the ordinal numbers of the tracks

Download (84KB)
5. Fig. 4. LET spectra of cosmic charged particles measured using TTD inside (L-01 internal) and outside (L-01 external) the protective container after exposure on board the ISS RS

Download (13KB)
6. Fig. 5. Shielding functions for the locations of passive detector assemblies on the cabin wall outside (solid line) and inside (dashed line) the container

Download (11KB)

Copyright (c) 2025 Russian Academy of Sciences