Generation and dynamics of the Hall magnetic field during Sub-Alfven plasma expansion in the kinetic regime

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The paper presents a complex study of the Hall effect during the expansion of a spherical plasma cloud into a medium with a uniform external magnetic field. The results were obtained in a laboratory experiment on the KI-1 plasma facility and three-dimensional numerical modeling using the “particle-in-cell” method. The data obtained are in good qualitative and quantitative agreement and demonstrate that when the plasma cloud expands in a regime where the Larmor radius of ions RL is comparable to the scale of the diamagnetic cavity Rb, a large-scale antisymmetric magnetic fields structure is formed, caused by Hall effects. In this case, both internal and external Hall magnetic structures are observed. The work demonstrates the coherence between Hall effects and the diamagnetic cavity collapse, which occurs as the transfer of a magnetic field by Hall electrons currents at an anomalously high speed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Divin

Saint Petersburg State University

Хат алмасуға жауапты Автор.
Email: a.divin@spbu.ru
Ресей, St. Petersburg

A. Chibranov

Institute of Laser Physics SB RAS

Email: a.divin@spbu.ru
Ресей, Novosibirsk

I. Paramonik

Saint Petersburg State University

Email: a.divin@spbu.ru
Ресей, St. Petersburg

Yu. Zakharov

Institute of Laser Physics SB RAS

Email: a.divin@spbu.ru
Ресей, Novosibirsk

A. Berezutsky

Institute of Laser Physics SB RAS

Email: a.divin@spbu.ru
Ресей, Novosibirsk

V. Posukh

Institute of Laser Physics SB RAS

Email: a.divin@spbu.ru
Ресей, Novosibirsk

M. Rumenskikh

Institute of Laser Physics SB RAS

Email: a.divin@spbu.ru
Ресей, Novosibirsk

J. Kropotina

Ioffe Institute RAS

Email: a.divin@spbu.ru
Ресей, St. Petersburg

I. Shaikhislamov

Institute of Laser Physics SB RAS

Email: a.divin@spbu.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Райзер Ю.П. О торможении и превращениях энергии плазмы, расширяющейся в пустом пространстве, в котором имеется магнитное поле // Прикладная механика и техническая физика. 1963. № 6. С. 19–28.
  2. Ripin B.H., Huba J.D., McLean E.A. et al. Sub-Alfvénic plasma expansion // Physics of Fluids B: Plasma Physics. 1993. V. 5. Iss. 10. P. 3491–3506.
  3. Ferriere K.M., Mac Low M.M., Zweibel E.G. Expansion of a superbubble in a uniform magnetic field // The Astrophysical J. 1991. V. 375. P. 239–253.
  4. Bernhardt P.A., Roussel-Dupre R.A., Pongratz M.B. et al. Observations and theory of the AMPTE magnetotail barium releases // J. Geophysical Research: Space Physics. 1987. V. 92. Iss. A6. P. 5777–5794.
  5. Метелкин Е.В., Сорокин В.М. Геомагнитные возмущения, генерируемые разлетом плазменных образований // Геомагнетизм и аэрономия. 1988. Т. 28. № 5. С. 756–759.
  6. Rajzer Y.P., Surzhikov S.T. Magnetohydrodynamic description of collisionless plasma expansion in the upper atmosphere // AIAA Journal. 1995. V. 33. Iss. 3. P. 486–490.
  7. Zakharov Y.P., Orishich O.M., Ponomarenko A.G. et al. Experimental study on the efficiency of slowing-down of exploding diamagnetic plasma clouds by a magnetic field // Fizika Plazmy (in Russian). 1986. V. 12. Iss. 10.
  8. Zakharov Y.P., Antonov V.V., Boyarintsev E.L. et al. Role of the Hall flute instability in the interaction of laser and space plasmas with a magnetic field // Plasma physics reports. 2006. V. 32. P. 183–204.
  9. Nunami M., Nishihara K. Numerical analysis of laser produced plasma expansion with large ion Larmor radius via 3D PIC simulation // J. Plasma Fusion Res. Ser. 2009. V. 8. P. 815–818.
  10. Huba J.D., Lyon J.G., Hassam A.B. Theory and simulation of the Rayleigh-Taylor instability in the limit of large Larmor radius // Physical review letters. 1987. V. 59. Iss. 26. Art.ID. 2971.
  11. Huba J.D., Hassam A.B., Satyanarayana P. Nonlocal theory of the Rayleigh–Taylor instability in the limit of unmagnetized ions // Physics of Fluids B: Plasma Physics. 1989. V. 1. Iss 4. P. 931–941.
  12. Hassam A.B., Huba J.D. Structuring of the AMPTE magnetotail barium releases // Geophysical research letters. 1987. V. 14. Iss. 1. P. 60–63.
  13. Bingham R., Shapiro V.D., Tsytovich V.N. et al. Theory of wave activity occurring in the AMPTE artificial comet // Physics of Fluids B: Plasma Physics. 1991. V. 3. Iss. 7. P. 1728–1738.
  14. Huba J.D., Bernhardt P.A., Lyon J.G. Preliminary study of the CRRES magnetospheric barium releases // J. Geophysical Research: Space Physics. 1992. V. 97. Iss. A1. P. 11–24.
  15. Kellogg P.J., Bale S.D., Goetz K. et al. Toward a physics based model of hypervelocity dust impacts // J. Geophysical Research: Space Physics. 2021. V. 126. Iss. 9. Art.ID. e2020JA028415.
  16. Dimonte G., Wiley L.G. Dynamics of exploding plasmas in a magnetic field // Physical review letters. 1991. V. 67. Iss. 13. Art.ID. 1755.
  17. Collette A., Gekelman W. Structure of an exploding laser-produced plasma // Physics of Plasmas. 2011. V. 18. Iss. 5. Art.ID. 055705.
  18. Ryutov D., Drake R.P., Kane J. et al. Similarity criteria for the laboratory simulation of supernova hydrodynamics // The Astrophysical J. 1999. V. 518. Iss. 2. Art.ID. 821.
  19. Zakharov Y.P. Collisionless laboratory astrophysics with lasers // IEEE transactions on plasma science. 2003. V. 31. Iss. 6. P. 1243–1251.
  20. Winske D., Huba J.D., Niemann C. et al. Recalling and updating research on diamagnetic cavities: Experiments, theory, simulations // Frontiers in Astronomy and Space Sciences. 2019. V. 5. Art.ID. 51.
  21. Remington B.A., Arnett D., Paul R. et al. Modeling astrophysical phenomena in the laboratory with intense lasers // Science. 1999. V. 284. Iss. 5419. P. 1488–1493.
  22. Gushchin M.E., Korobkov S.V., Terekhin V.A. et al. Laboratory simulation of the dynamics of a dense plasma cloud expanding in a magnetized background plasma on a Krot large-scale device // JETP Letters. 2018. V. 108. P. 391–395.
  23. Burdonov K., Bonit R., Giannini V. Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments // Astronomy & Astrophysics. 2021. V. 648. Art.ID. A81.
  24. Vshivkova L., Vshivkov K., Dudnikova G. 3D numerical modeling of the plasma beam expansion using the MHD-kinetic approach // J. Physics: Conference Series. 2019. V. 1336. Iss. 1. Art.ID. 012022.
  25. Lapenta G., Brackbill J.U., Ricci P. Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas // Physics of plasmas. 2006. V. 13. Iss. 5. Art.ID. 55904.
  26. Divin A., Markidis S., Lapenta G. et al. Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection // Physics of plasmas. 2010. V. 17. Iss. 12. Art.ID. 122102.
  27. Deca J., Divin A., Henri P. et al. Electron and ion dynamics of the solar wind interaction with a weakly outgassing comet // Physical review letters. 2017. V. 118. Iss. 20. Art.ID. 205101.
  28. Deca J., Divin A., Lapenta G. et al. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies // Physical review letters. 2014. V. 112. Iss. 15. Art.ID. 151102.
  29. Brackbill J.U., Forslund D.W. An implicit method for electromagnetic plasma simulation in two dimensions // J. Computational Physics. 1982. V. 46. Iss. 2. P. 271–308.
  30. Bychenkov V.Y., Rozmus W., Capjack C.E. Single-mode nonlinear regime of Weibel instability in a plasma with anisotropic temperature // J. Experimental and Theoretical Physics Letters. 2003. V. 78. P. 119–122.
  31. Губченко В.М. Структура границы диамагнитного облака в электронном кинетическом описании при инжекции в гипербетном режиме // Сб. тр. конф. Солнечная и солнечно-земная физика. Санкт-Петербург, Россия. 2020. С. 81–84.
  32. Gubchenko V.M. Kinetic description of the 3D electromagnetic structures formation in flows of expanding plasma coronas. Part 1: General // Geomagnetism and Aeronomy. 2015. V. 55. P. 831–845.
  33. Berezutsky A.G., Chibranov A.A., Efimov M.A. et al. Sub-Alfvenic Expansion of Spherical Laser-Produced Plasma: Flutes, Cavity Collapse and Field-Aligned Jets // Plasma Physics Reports. 2023. V. 49. Iss. 3. P. 351–361.
  34. Zakharov Y.P., Antonov V.M., Melekhov A.V. et al. Simulation of astrophysical plasma dynamics in the laser experiments // Proc. AIP Conf. 1996. V. 369. Iss. 1. P. 357–362.
  35. Shaikhislamov I.F., Zakharov Y.P., Posukh V.G. et al. Laboratory model of magnetosphere created by strong plasma perturbation with frozen-in magnetic field // Plasma Physics and Controlled Fusion. 2014. V. 56. Iss. 12. Art.ID. 125007.
  36. Башурин В.П., Голубев А., Терехин В.А. О бесстолкновительном торможении ионизированного облака, разлетающегося в однородную замагниченную плазму // Прикладная механика и техническая физика. 1983. Т. 24. № 5. С. 10–17.
  37. Divin A., Semenov V., Korovinskiy D. et al. A new model for the electron pressure nongyrotropy in the outer electron diffusion region // Geophysical Research Letters. 2016. V. 43. Iss. 20. P. 10.565–10.573.
  38. Divin A., Semenov V., Zaitsev I. et al. Inner and outer electron diffusion region of antiparallel collisionless reconnection: Density dependence // Physics of Plasmas. 2019. V. 26. Iss. 10. Art.ID. 102305.
  39. Chibranov A.A. Shaikhislamov I.F., Berezutskiy A.G. et al. Hall Effects and Diamagnetic Cavity Collapse during a Laser Plasma Cloud Expansion into a Vacuum Magnetic Field // Astronomy Reports. 2024. V. 68. Iss. 4. P. 418–428.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Three-dimensional structure of the plasma cloud at time t/τ0 ≈ 0.86 . The density distribution and the magnitude of the azimuthal magnetic field are shown in the corresponding color scale. The field lines demonstrate the full vector of the magnetic field. When displaying the plasma density, the opacity depends linearly on the density

Жүктеу (71KB)
3. Fig. 2. Configuration of the magnetic field B–B0 produced only by cavern currents (a). Time evolution of the dipole Iφ and toroidal Iτ cavern currents (b). Time evolution of Iτ /Iφ (c)

Жүктеу (47KB)
4. Fig. 3. Profiles of the By (Hall) component in the X–Z plane in the initial expansion phase t = 0.29τ0 (a), at the moment of the peak of diamagnetism t = 0.86τ0 (b), in the late phase t = 1.42τ0 (c), when the sign of the Hall field changes. The arrows show the direction of the currents

Жүктеу (77KB)
5. Fig. 4. Distribution functions fi (x, Vx) (a1, b1, c1), fi (x, Vz) (a2, b2, c2), magnetic field (a3, b3, c3), thermal gyroradius ρth = Vth,i /Ω, inertial gyroradius ρin = V/Ω (a4, b4, c4) along the profile in the y = 0 plane, which passes at an angle of 45° to the X–Y plane. The distances are given in projection onto the X axis, respectively, the radial distance along the profile is equal to

Жүктеу (59KB)
6. Fig. 5. Time sweep of Bz, By and plasma density at the points marked in the nodes in Fig. 3a. Red line: main field. Black line: Hall component (By in the X–Z plane). Blue line: plasma density. Magnetic field and density are normalized to B0, n0, respectively. For clarity, the By strength is multiplied by 2.

Жүктеу (92KB)
7. Fig. 6. Oscillograms of the fundamental magnetic field component: the field derivative (red lines), the azimuthal By component (black lines) and the ion current density (blue lines). The direction of the external magnetic field of magnitude Bz0 = –200 G is shown by the red arrow. The measurements were performed in the meridional Z–X plane in the RM2 quadrant. Each cell in the table corresponds to a specific measurement point relative to the target (shown in the upper left corner), with coordinates marked on the X and Z axes. The characteristic time scale for the experimental conditions is τ0 = 19.6 cm/(70 km/s) = 2.8 μs.

Жүктеу (103KB)
8. Fig. 7. Magnetic measurements in different quadrants of the X-Z plane relative to a 5 mm diameter laser target in an experiment with an external magnetic field Bz0 = –200 G. The red curve is the derivative of the fundamental component of the external magnetic field. The black, blue, and green curves are the By-component recorded in three different runs.

Жүктеу (54KB)
9. Fig. 8. Spatial distribution of azimuthal fields measured with magnetic probes in the X–Z plane. The position of the circles corresponds to the measurement points in space, and the color reflects the direction of the azimuthal component (red — toward the observer, blue — away from the observer). Panels a, b — the expansion of the OLP with energy E1 ≈ 10 J (target Ø5 mm) into a magnetic field B0 = –200 G and B0 = +200 G, respectively; c, d — the expansion of the OLP with energy E2 ≈ 25 J (target Ø10 mm) into a magnetic field B0 = –200 G and B0 = +200 G, respectively.

Жүктеу (87KB)

© Russian Academy of Sciences, 2025