Generation and dynamics of the Hall magnetic field during Sub-Alfven plasma expansion in the kinetic regime
- Авторлар: Divin A.V.1, Chibranov A.A.2, Paramonik I.P.1, Zakharov Y.P.2, Berezutsky A.G.2, Posukh V.G.2, Rumenskikh M.S.2, Kropotina J.A.3, Shaikhislamov I.F.2
-
Мекемелер:
- Saint Petersburg State University
- Institute of Laser Physics SB RAS
- Ioffe Institute RAS
- Шығарылым: Том 63, № 3 (2025)
- Беттер: 223-238
- Бөлім: Articles
- URL: https://modernonco.orscience.ru/0023-4206/article/view/689486
- DOI: https://doi.org/10.31857/S0023420625030013
- EDN: https://elibrary.ru/PZJOEF
- ID: 689486
Дәйексөз келтіру
Аннотация
The paper presents a complex study of the Hall effect during the expansion of a spherical plasma cloud into a medium with a uniform external magnetic field. The results were obtained in a laboratory experiment on the KI-1 plasma facility and three-dimensional numerical modeling using the “particle-in-cell” method. The data obtained are in good qualitative and quantitative agreement and demonstrate that when the plasma cloud expands in a regime where the Larmor radius of ions RL is comparable to the scale of the diamagnetic cavity Rb, a large-scale antisymmetric magnetic fields structure is formed, caused by Hall effects. In this case, both internal and external Hall magnetic structures are observed. The work demonstrates the coherence between Hall effects and the diamagnetic cavity collapse, which occurs as the transfer of a magnetic field by Hall electrons currents at an anomalously high speed.
Толық мәтін

Авторлар туралы
A. Divin
Saint Petersburg State University
Хат алмасуға жауапты Автор.
Email: a.divin@spbu.ru
Ресей, St. Petersburg
A. Chibranov
Institute of Laser Physics SB RAS
Email: a.divin@spbu.ru
Ресей, Novosibirsk
I. Paramonik
Saint Petersburg State University
Email: a.divin@spbu.ru
Ресей, St. Petersburg
Yu. Zakharov
Institute of Laser Physics SB RAS
Email: a.divin@spbu.ru
Ресей, Novosibirsk
A. Berezutsky
Institute of Laser Physics SB RAS
Email: a.divin@spbu.ru
Ресей, Novosibirsk
V. Posukh
Institute of Laser Physics SB RAS
Email: a.divin@spbu.ru
Ресей, Novosibirsk
M. Rumenskikh
Institute of Laser Physics SB RAS
Email: a.divin@spbu.ru
Ресей, Novosibirsk
J. Kropotina
Ioffe Institute RAS
Email: a.divin@spbu.ru
Ресей, St. Petersburg
I. Shaikhislamov
Institute of Laser Physics SB RAS
Email: a.divin@spbu.ru
Ресей, Novosibirsk
Әдебиет тізімі
- Райзер Ю.П. О торможении и превращениях энергии плазмы, расширяющейся в пустом пространстве, в котором имеется магнитное поле // Прикладная механика и техническая физика. 1963. № 6. С. 19–28.
- Ripin B.H., Huba J.D., McLean E.A. et al. Sub-Alfvénic plasma expansion // Physics of Fluids B: Plasma Physics. 1993. V. 5. Iss. 10. P. 3491–3506.
- Ferriere K.M., Mac Low M.M., Zweibel E.G. Expansion of a superbubble in a uniform magnetic field // The Astrophysical J. 1991. V. 375. P. 239–253.
- Bernhardt P.A., Roussel-Dupre R.A., Pongratz M.B. et al. Observations and theory of the AMPTE magnetotail barium releases // J. Geophysical Research: Space Physics. 1987. V. 92. Iss. A6. P. 5777–5794.
- Метелкин Е.В., Сорокин В.М. Геомагнитные возмущения, генерируемые разлетом плазменных образований // Геомагнетизм и аэрономия. 1988. Т. 28. № 5. С. 756–759.
- Rajzer Y.P., Surzhikov S.T. Magnetohydrodynamic description of collisionless plasma expansion in the upper atmosphere // AIAA Journal. 1995. V. 33. Iss. 3. P. 486–490.
- Zakharov Y.P., Orishich O.M., Ponomarenko A.G. et al. Experimental study on the efficiency of slowing-down of exploding diamagnetic plasma clouds by a magnetic field // Fizika Plazmy (in Russian). 1986. V. 12. Iss. 10.
- Zakharov Y.P., Antonov V.V., Boyarintsev E.L. et al. Role of the Hall flute instability in the interaction of laser and space plasmas with a magnetic field // Plasma physics reports. 2006. V. 32. P. 183–204.
- Nunami M., Nishihara K. Numerical analysis of laser produced plasma expansion with large ion Larmor radius via 3D PIC simulation // J. Plasma Fusion Res. Ser. 2009. V. 8. P. 815–818.
- Huba J.D., Lyon J.G., Hassam A.B. Theory and simulation of the Rayleigh-Taylor instability in the limit of large Larmor radius // Physical review letters. 1987. V. 59. Iss. 26. Art.ID. 2971.
- Huba J.D., Hassam A.B., Satyanarayana P. Nonlocal theory of the Rayleigh–Taylor instability in the limit of unmagnetized ions // Physics of Fluids B: Plasma Physics. 1989. V. 1. Iss 4. P. 931–941.
- Hassam A.B., Huba J.D. Structuring of the AMPTE magnetotail barium releases // Geophysical research letters. 1987. V. 14. Iss. 1. P. 60–63.
- Bingham R., Shapiro V.D., Tsytovich V.N. et al. Theory of wave activity occurring in the AMPTE artificial comet // Physics of Fluids B: Plasma Physics. 1991. V. 3. Iss. 7. P. 1728–1738.
- Huba J.D., Bernhardt P.A., Lyon J.G. Preliminary study of the CRRES magnetospheric barium releases // J. Geophysical Research: Space Physics. 1992. V. 97. Iss. A1. P. 11–24.
- Kellogg P.J., Bale S.D., Goetz K. et al. Toward a physics based model of hypervelocity dust impacts // J. Geophysical Research: Space Physics. 2021. V. 126. Iss. 9. Art.ID. e2020JA028415.
- Dimonte G., Wiley L.G. Dynamics of exploding plasmas in a magnetic field // Physical review letters. 1991. V. 67. Iss. 13. Art.ID. 1755.
- Collette A., Gekelman W. Structure of an exploding laser-produced plasma // Physics of Plasmas. 2011. V. 18. Iss. 5. Art.ID. 055705.
- Ryutov D., Drake R.P., Kane J. et al. Similarity criteria for the laboratory simulation of supernova hydrodynamics // The Astrophysical J. 1999. V. 518. Iss. 2. Art.ID. 821.
- Zakharov Y.P. Collisionless laboratory astrophysics with lasers // IEEE transactions on plasma science. 2003. V. 31. Iss. 6. P. 1243–1251.
- Winske D., Huba J.D., Niemann C. et al. Recalling and updating research on diamagnetic cavities: Experiments, theory, simulations // Frontiers in Astronomy and Space Sciences. 2019. V. 5. Art.ID. 51.
- Remington B.A., Arnett D., Paul R. et al. Modeling astrophysical phenomena in the laboratory with intense lasers // Science. 1999. V. 284. Iss. 5419. P. 1488–1493.
- Gushchin M.E., Korobkov S.V., Terekhin V.A. et al. Laboratory simulation of the dynamics of a dense plasma cloud expanding in a magnetized background plasma on a Krot large-scale device // JETP Letters. 2018. V. 108. P. 391–395.
- Burdonov K., Bonit R., Giannini V. Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments // Astronomy & Astrophysics. 2021. V. 648. Art.ID. A81.
- Vshivkova L., Vshivkov K., Dudnikova G. 3D numerical modeling of the plasma beam expansion using the MHD-kinetic approach // J. Physics: Conference Series. 2019. V. 1336. Iss. 1. Art.ID. 012022.
- Lapenta G., Brackbill J.U., Ricci P. Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas // Physics of plasmas. 2006. V. 13. Iss. 5. Art.ID. 55904.
- Divin A., Markidis S., Lapenta G. et al. Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection // Physics of plasmas. 2010. V. 17. Iss. 12. Art.ID. 122102.
- Deca J., Divin A., Henri P. et al. Electron and ion dynamics of the solar wind interaction with a weakly outgassing comet // Physical review letters. 2017. V. 118. Iss. 20. Art.ID. 205101.
- Deca J., Divin A., Lapenta G. et al. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies // Physical review letters. 2014. V. 112. Iss. 15. Art.ID. 151102.
- Brackbill J.U., Forslund D.W. An implicit method for electromagnetic plasma simulation in two dimensions // J. Computational Physics. 1982. V. 46. Iss. 2. P. 271–308.
- Bychenkov V.Y., Rozmus W., Capjack C.E. Single-mode nonlinear regime of Weibel instability in a plasma with anisotropic temperature // J. Experimental and Theoretical Physics Letters. 2003. V. 78. P. 119–122.
- Губченко В.М. Структура границы диамагнитного облака в электронном кинетическом описании при инжекции в гипербетном режиме // Сб. тр. конф. Солнечная и солнечно-земная физика. Санкт-Петербург, Россия. 2020. С. 81–84.
- Gubchenko V.M. Kinetic description of the 3D electromagnetic structures formation in flows of expanding plasma coronas. Part 1: General // Geomagnetism and Aeronomy. 2015. V. 55. P. 831–845.
- Berezutsky A.G., Chibranov A.A., Efimov M.A. et al. Sub-Alfvenic Expansion of Spherical Laser-Produced Plasma: Flutes, Cavity Collapse and Field-Aligned Jets // Plasma Physics Reports. 2023. V. 49. Iss. 3. P. 351–361.
- Zakharov Y.P., Antonov V.M., Melekhov A.V. et al. Simulation of astrophysical plasma dynamics in the laser experiments // Proc. AIP Conf. 1996. V. 369. Iss. 1. P. 357–362.
- Shaikhislamov I.F., Zakharov Y.P., Posukh V.G. et al. Laboratory model of magnetosphere created by strong plasma perturbation with frozen-in magnetic field // Plasma Physics and Controlled Fusion. 2014. V. 56. Iss. 12. Art.ID. 125007.
- Башурин В.П., Голубев А., Терехин В.А. О бесстолкновительном торможении ионизированного облака, разлетающегося в однородную замагниченную плазму // Прикладная механика и техническая физика. 1983. Т. 24. № 5. С. 10–17.
- Divin A., Semenov V., Korovinskiy D. et al. A new model for the electron pressure nongyrotropy in the outer electron diffusion region // Geophysical Research Letters. 2016. V. 43. Iss. 20. P. 10.565–10.573.
- Divin A., Semenov V., Zaitsev I. et al. Inner and outer electron diffusion region of antiparallel collisionless reconnection: Density dependence // Physics of Plasmas. 2019. V. 26. Iss. 10. Art.ID. 102305.
- Chibranov A.A. Shaikhislamov I.F., Berezutskiy A.G. et al. Hall Effects and Diamagnetic Cavity Collapse during a Laser Plasma Cloud Expansion into a Vacuum Magnetic Field // Astronomy Reports. 2024. V. 68. Iss. 4. P. 418–428.
Қосымша файлдар
