О действии ионизирующего излучения на флуоресцентный краситель в растворе, в комплексе с ДНК и в ее холестерической жидкокристаллической дисперсии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Проведено комплексное исследование поведения красителя SYBR Green I (SG) при воздействии на него ионизирующего излучения (ИИ) в растворе в свободном состоянии, в комплексе с ДНК, а также в ее холестерических жидкокристаллических дисперсиях (ХЖКД). Показано, что введение SG в ХЖКД ДНК позволяет не только существенно повысить его собственную устойчивость к ИИ, но и приводит к появлению у этих перспективных для дозиметрии систем дополнительной функциональности – возможности регистрировать поглощенную дозу по изменению интенсивности флуоресценции или амплитуды индуцированного сигнала кругового дихроизма. Введение красителя также позволяет существенно расширить диапазон регистрируемых с их помощью доз.

Об авторах

М. А. Колыванова

Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России; Институт биохимической физики им. Н.М. Эмануэля РАН

Москва, 123098 Россия; Москва, 119334 Россия

М. А. Климович

Институт биохимической физики им. Н.М. Эмануэля РАН

Москва, 119334 Россия

А. В. Белоусов

Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России; Институт биохимической физики им. Н.М. Эмануэля РАН

Москва, 123098 Россия; Москва, 119334 Россия

В. А. Кузьмин

Институт биохимической физики им. Н.М. Эмануэля РАН

Москва, 119334 Россия

В. Н. Морозов

Институт биохимической физики им. Н.М. Эмануэля РАН

Email: morozov.v.n@mail.ru
Москва, 119334 Россия

Список литературы

  1. Jordan K., Avvakumov N. // Phys. Med. Biol. 2009. V. 54. № 22. P. 6773. https://doi.org/10.1088/0031-9155/54/22/002
  2. Abd El-kareem M. S. M., Abdelhady A. M., Elmaghraby E. K. et al. // Radiat. Phys. Chem. 2025. V. 226. P. 112284. https://doi.org/10.1016/j.radphyschem.2024.112284
  3. El-Assy N. B., Ibrahim I. A., Abdel-Fattah A. T. et al. // J. Radioanal. Nucl. Chem. 1986. V. 97. P. 247. https://doi.org/10.1007/bf02035669
  4. Vysotskaya N. A., Bortun L. N., Ogurtsov N. A. et al. // Int. J. Radiat. Appl. Instrum. Part C. 1986. V. 28. № 5–6. P. 469. https://doi.org/10.1016/1359-0197(86)90171-2
  5. Gafar S. M., El-Kelany M. A., El-Shawadfy S. R. // J. Radiat. Res. Appl. Sci. 2018. V. 11. № 3. P. 190. https://doi.org/10.1016/j.jrras.2018.01.004
  6. Oberoi P. R., Fuke C. A., Maurya C. B. et al. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 466. P. 82. https://doi.org/10.1016/j.nimb.2020.01.019
  7. Kinashi K., Tsuchida H., Sakai W. et al. // ChemistryOpen. 2020. V. 9. № 5. P. 623. https://doi.org/10.1002/open.202000071
  8. Park M. A., Moore S. C., Limpa-Amara N. et al. // Nucl. Instrum. Methods Phys. Res. A. 2006. V. 569. № 2. P. 543. https://doi.org/10.1016/j.nima.2006.08.090
  9. Ergun E. // J. Fluoresc. 2021. V. 31. № 4. P. 941. https://doi.org/10.1007/s10895-021-02715-2
  10. Jiang L., Li W., Nie J. et al. // ACS Sens. 2021. V. 6. № 4. P. 1643. https://doi.org/10.1021/acssensors.1c00204
  11. Qin D., Han Y., Hu L. // J. Fluoresc. 2023. V. 33. № 5. P. 2015. https://doi.org/10.1007/s10895-023-03205-3
  12. Kolyvanova M. A., Klimovich M. A., Koshevaya E. D. et al. // Photonics. 2023. V. 10. № 6. P. 671. https://doi.org/10.3390/photonics10060671
  13. Choudhary M. K., Gorai S., Patro B. S. et al. // ChemPhotoChem. 2023. V. 8. № 2. P. e202300245. https://doi.org/10.1002/cptc.202300245
  14. Lifanovsky N. S., Yablontsev N. A., Belousov A. V. et al. // J. Fluoresc. 2024. In press. https://doi.org/10.1007/s10895-024-03934-z
  15. Lifanovsky N., Spector D., Egorov A. et al. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025. V. 326. P. 125227. https://doi.org/10.1016/j.saa.2024.125227
  16. Колыванова М. А., Лифановский Н. С., Никитин Е. А. и др. // Химия высоких энергий. 2024. Т. 58. № 2. P. 107. https://doi.org/10.31857/s0023119324020042
  17. de Groot F. M. H., Gottarelli G., Masiero S. et al. // Angew. Chem. Int. Ed. Engl. 1997. V. 36. № 9. P. 954. https://doi.org/10.1002/anie.199709541
  18. Obeidat M., McConnell K. A., Li X. et al. // Med. Phys. 2018. V. 45. № 7. P. 3460. https://doi.org/10.1002/mp.12956
  19. Li X., McConnell K. A., Che J. et al. // Radiat. Res. 2020. V. 194. № 2. P. 173. https://doi.org/10.1667/rr15500.1
  20. Ai Z., Wang L., Guo Q. et al. // Chem. Commun. 2021. V. 57. № 41. P. 5071. https://doi.org/10.1039/d1cc01851e
  21. Евдокимов Ю. М., Салянов В. И., Семенов С. В., Скуридин С. Г. Жидкокристаллические дисперсии и наноконструкции ДНК. М.: Радиотехника, 2008. 296 с.
  22. Kolyvanova M. A., Klimovich M. A., Shibaeva A. V. et al. // Liq. Cryst. 2022. V. 49. № 10. P. 1359. https://doi.org/10.1080/02678292.2022.2032854
  23. Kolyvanova M. A., Klimovich M. A., Belousov A. V. et al. // Photonics. 2022. V. 9. № 11. P. 787. https://doi.org/10.3390/photonics9110787
  24. Ouameur A. A., Tajmir-Riahi H. A. // J. Biol. Chem. 2004. V. 279. № 40. P. 42041. https://doi.org/10.1074/jbc.M406053200
  25. Zipper H., Brunner H., Bernhagen J. et al. // Nucleic Acids Res. 2004. V. 32. № 12. P. e103. https://doi.org/10.1093/nar/gnh101
  26. Morozov V. N., Klimovich M. A., Kostyukov A. A. et al. // J. Lumin. 2022. V. 252. P. 119381. https://doi.org/10.1016/j.jlumin.2022.119381
  27. Климович М. А., Колыванова М. А., Дементьева О. В. и др. // Коллоидный журнал. 2023. Т. 85. № 5. С. 583. https://doi.org/10.31857/s0023291223600542
  28. Armitage B. A. Cyanine dye–DNA interactions: intercalation, groove binding, and aggregation. In: Waring M. J., Chaires J. B. DNA Binders and related subjects. Springer, Berlin, 2005, pp. 55–76. https://doi.org/10.1007/b100442
  29. Dragan A. I., Pavlovic R., McGivney J. B. et al. // J. Fluoresc. 2012. V. 22. P. 1189. https://doi.org/10.1007/s10895-012-1059-8
  30. Cosa G., Focsaneanu K. S., McLean J. R. et al. // Photochem. Photobiol. 2001. V. 73. № 6. P. 585. https://doi.org/10.1562/0031-8655(2001)073<0585:ppofdd>2.0.co;2
  31. Saarnio V. K., Alaranta J. M., Lahtinen T. M. // J. Mater. Chem. B. 2021. V. 9. № 16. P. 3484. https://doi.org/10.1039/d1tb00312g
  32. Alaranta J. M., Truong K. N., Matus M. F. et al. // Dyes Pigm. 2023. V. 208. P. 110844. https://doi.org/10.1016/j.dyepig.2022.110844
  33. Miller S. E., Taillon-Miller P., Kwok P. Y. // Biotechniques. 1999. V. 27. № 1. P. 34. https://doi.org/10.2144/99271bm05
  34. Noble R. T., Fuhrman J. A. // Aquat. Microb. Ecol. 1998. V. 14. P. 113. https://doi.org/10.3354/ame014113
  35. Ririe K. M., Rasmussen R. P., Wittwer C. T. // Anal. Biochem. 1997. V. 245. № 2. P. 154. https://doi.org/10.1006/abio.1996.9916
  36. Marie D., Partensky F., Jacquet S. et al. // Appl. Environ. Microbiol. 1997. V. 63. № 1. P. 186. https://doi.org/10.1128/aem.63.1.186-193.1997
  37. Кудряшов Ю. Б. Радиационная биофизика (ионизирующие излучения). М.: ФИЗМАТЛИТ, 2004. 448 с.
  38. Clark G. L., Bierstedt Jr. P. E. // Radiat. Res. 1955. V. 2. № 3. P. 199. https://doi.org/10.2307/3570248
  39. El-Assy N. B., El-Wakeel E. I., Abdel Fattah A. A. // Int. J. Rad. Appl. Instrum. A. 1991. V. 42. № 1. P. 89. https://doi.org/10.1016/0883-2889(91)90129-o
  40. Chen Y. P., Liu S. Y., Yu H. Q. et al. // Chemosphere. 2008. V. 72. № 4. P. 532. https://doi.org/10.1016/j.chemosphere.2008.03.054
  41. Teif V. B., Bohinc K. // Prog. Biophys. Mol. Biol. 2011. V. 105. № 3. P. 208. https://doi.org/10.1016/j.pbiomolbio.2010.07.002
  42. Tankovskaia S. A., Kotb O. M., Dommes O. A. et al. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018. V. 200. P. 85. https://doi.org/10.1016/j.saa.2018.04.011
  43. Beshir W. B., Eid S., Gafar S. M. et al. // Appl. Radiat. Isot. 2014. V. 89. P. 13. https://doi.org/10.1016/j.apradiso.2013.11.030
  44. Denison L., Haigh A., D’Cunha G. et al. // Int. J. Radiat. Biol. 1992. V. 61. № 1. P. 69. https://doi.org/10.1080/09553009214550641
  45. Begusová M., Spotheim-Maurizot M., Michalik V. et al. // Int. J. Radiat. Biol. 2000. V. 76. № 1. P. 1. https://doi.org/10.1080/095530000138952
  46. Eberhardt M. K., Colina R. // J. Org. Chem. 1988. V. 53. № 5. P. 1071. https://doi.org/10.1021/jo00240a025
  47. Babbs C. F., Griffin D. W. // Free Radic. Biol. Med. 1989. V. 6. № 5. P. 493. https://doi.org/10.1016/0891-5849(89)90042-7
  48. Baldock D., Nebe-von-Caron G., Bongaerts R. et al. // Methods Appl. Fluoresc. 2013. V. 1. № 4. P. 045001. https://doi.org/10.1088/2050-6120/1/4/045001
  49. Jordan C. F., Lerman L. S., Venable J. H. // Nat. New Biol. 1972. V. 236. № 64. P. 67. https://doi.org/10.1038/newbio236067a0
  50. Евдокимов Ю. М., Скуридин С. Г., Салянов В. И. и др. // Биофизика. 2015. Т. 60. № 5. С. 861.
  51. Ellestad G. A. Drug and natural product binding to nucleic acids analyzed by electronic circular dichroism. In: Berova N., Polavarapu P. L., Nakanishi K., Woody R. W. Comprehensive chiroptical spectroscopy: applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules. Volume 2. John Wiley & Sons, Inc., New Jersey, 2012, pp. 635–664. https://doi.org/10.1002/9781118120392.ch20
  52. Иванов А. А., Салянов В. И., Стрельцов С. А. и др. // Биоорганическая химия. 2011. Т. 37. № 4. С. 530.
  53. Коваль В. С., Иванов А. А., Салянов В. И. и др. // Биоорганическая химия. 2017. Т. 43. № 2. С. 167. https://doi.org/10.7868/s0132342317020105
  54. Koval V. S., Arutyunyan A. F., Salyanov V. I. et al. // Bioorg. Med. Chem. 2020. V. 28. № 7. P. 115378. https://doi.org/10.1016/j.bmc.2020.115378
  55. Морозов В. Н., Климович М. А., Колыванова М. А. и др. // Химия высоких энергий. 2021. Т. 55. № 5. С. 339. https://doi.org/10.31857/s0023119321050089
  56. Morozov V. N., Klimovich M. A., Shibaeva A. V. et al. // Int. J. Mol. Sci. 2023. V. 24. № 14. P. 11365. https://doi.org/10.3390/ijms241411365
  57. Колыванова М. А., Климович М. А., Шишмакова Е. М. и др. // Коллоидный журнал. 2024. Т. 86. № 3. С. 344. https://doi.org/10.31857/s0023291224030049
  58. Колыванова М. А., Белоусов А. В., Кузьмин В. А. и др. // Химия высоких энергий. 2022. Т. 56. № 5. С. 416. https://doi.org/10.31857/s0023119322050072
  59. Morozov V. N., Kolyvanova M. A., Dement’eva O. V. et al. // J. Lumin. 2020. V. 219. P. 116898. https://doi.org/10.1016/j.jlumin.2019.116898
  60. Keller D., Bustamante C. // J. Chem. Phys. 1986. V. 84. № 6. P. 2972. https://doi.org/10.1063/1.450278
  61. Barzda V., Mustárdy L., Garab G. // Biochemistry. 1994. V. 33. № 35. P. 10837. https://doi.org/10.1021/bi00201a034
  62. Yevdokimov Y. M., Skuridin S. G., Semenov S. V. et al. // J. Biol. Phys. 2017. V. 43. № 1. P. 45. https://doi.org/10.1007/s10867-016-9433-4
  63. Hur J. H., Lee A. R., Yoo W. et al. // FEBS Lett. 2019. V. 593. № 18. P. 2628. https://doi.org/10.1002/1873-3468.13513
  64. Alexander P., Charlesby A. // J. Polym. Sci. 1957. V. 23. № 103. P. 355. https://doi.org/10.1002/pol.1957.1202310331
  65. Sakurada I., Ikad Y. // Bull. Inst. Chem. Res., Kyoto Univ. 1963. V. 41. № 1. P. 103.
  66. Wang B., Kodama M., Mukataka S. et al. // Polym. Gels Networks. 1998. V. 6. № 1. P. 71. https://doi.org/10.1016/s0966-7822(98)00003-3
  67. Sidorova N. Y., Rau D. C. // Biopolymers. 1995. V. 35. № 4. P. 377. https://doi.org/10.1002/bip.360350405
  68. Qu X., Chaires J. B. // J. Am. Chem. Soc. 2001. V. 123. № 1. P. 1. https://doi.org/10.1021/ja002793v
  69. Degtyareva N. N., Wallace B. D., Bryant A. R. et al. // Biophys. J. 2007. V. 92. № 3. P. 959. https://doi.org/10.1529/biophysj.106.097451
  70. Yu H., Ren J., Chaires J. B. et al. // J. Med. Chem. 2008. V. 51. № 19. P. 5909. https://doi.org/10.1021/jm800826y
  71. Timasheff S. N. // Proc. Natl. Acad. Sci. USA. 1998. V. 95. № 13. P. 7363. https://doi.org/10.1073/pnas.95.13.7363

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025