Microwave synthesis and luminescent properties of nanosized yttrium vanadate doped with holmium ions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of holmium concentration on the luminescent properties of nanosized HoxY1-xVO4 powders (where x = 0, 0.05, 0.10, 0.15) synthesized by coprecipitation of yttrium vanadate under the influence of microwave radiation was established. The elemental and phase composition, average size of nanopowders (27 ± 2 nm) were determined, the incorporation of Ho3+ ions into the Y3+ ion position was confirmed. The maximum content of holmium ions (10%) was revealed, above which concentration quenching of luminescence was observed. For Ho0.05Y0.95VO4, the luminescence intensity increased by 1.5 times compared to YVO4, while a pronounced band was observed at 550 nm, corresponding to the transition 5F4 /5S25I8.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Tomina

Voronezh State University; Voronezh State Forest Engineering University named after G.F. Morozov

Хат алмасуға жауапты Автор.
Email: tomina-e-v@yandex.ru
Ресей, Voronezh; Voronezh

E. Popova

Voronezh State University; AO “NIIPM” (Joint-Stock Company “Scientific Research Institute of Semiconductor Engineering”)

Email: tomina-e-v@yandex.ru
Ресей, Voronezh; Voronezh

B. Sladkopevtsev

Voronezh State University

Email: tomina-e-v@yandex.ru
Ресей, Voronezh

Nguen An’ T’en

Ho Chi Minh City Pedagogical University

Email: tomina-e-v@yandex.ru
Ресей, Ho Chi Minh City, Vietnam

E. Khudyakova

Voronezh State University

Email: tomina-e-v@yandex.ru
Ресей, Voronezh

A. Solov’eva

Voronezh State University

Email: tomina-e-v@yandex.ru
Ресей, Voronezh

A. Sinel’nikov

Voronezh State University

Email: tomina-e-v@yandex.ru
Ресей, Voronezh

A. Doroshenko

Voronezh State University

Email: tomina-e-v@yandex.ru
Ресей, Voronezh

Әдебиет тізімі

  1. Koparkar K.A., Omanwar S.K. // J. Lumin. 2016. № 175. P. 176.
  2. Xu Y.L., Teng B., Zhong D., Yang L., He J., Meng Y. et al. // J. Mater. Sci.: Mater Electron. 2018. V. 29. P. 714.
  3. Vitola V., Lahti V., Bite I., Spustaka A., Millers D., Lastusaari M. et al. // Scripta Mater. 2021. № 190. P. 86.
  4. Huang J., Tang L., Chen N., Du G. // Mat. 2019. V. 12. 3830.
  5. La M., Li N., Sha R., Bao S., Jin P. // Scripta Mater. 2018. № 142. P. 36.
  6. Tang Y., Mei R., Yang S., Tang H., Yin W., Xu Y., Gao Y. // Superlattices Microstruct. 2016. V. 92. P. 256.
  7. Errandonea D., Garg A.B. // Prog. Mater. Sci. 2018. V. 97. P. 123.
  8. Shao J., Liu C., Zhou X., Hong L., Yan J., Kang Z. // Mater. Sci. Semicond. Process. 2018. V. 84. P. 58.
  9. Shao J., Yan J., Li X., Li S., Hu T. // Dyes and Pigments. 2019. V. 160. P. 555.
  10. Bajgiran K.R., Darapaneni P., Melvin A.T., Dorman J.A. // J. Phys. Chem. 2019. V. 123. P. 13027.
  11. Zheng Y., Deng L., Li J., Jia T., Qiu J., Sun Z., Zhang S. // Photonics Res. 2019. V. 7. P. 486.
  12. Rafiaei S.M., Shokouhimehr M. // Mater. Res. Express. 2018. V. 5. 116208.
  13. Tomina E.V., Sladkopevtsev B.V., Tien N.A., Mai V.Q. // Inorg. Mater. 2023. V. 59. № 13. P. 1363.
  14. Matos M.G., Faria E.H., Rocha L.A., Calefi P.S., Ciuffi K.J., Nassar E.J., Sarmento V.H.V. // J. Lumin. 2014. V. 147. P. 190.
  15. Zhu H., Li X., Liu Y., Chen J., Gao L., Chen J. et al. // Mater. Res. Express. 2019. V. 6. 086218.
  16. Yahiaoui Z., Hassairi M.A., Dammak M., Cavalli E. // J. Alloys Compd. 2018. № 763. P. 56.
  17. Миттова И.Я., Томина Е.В., Лаврушина С.С. Наноматериалы: синтез нанокристаллических порошков и получение компактных нанокристаллических материалов: учеб. пособие для вузов. Воронеж, ИПЦ ВГУ, 2007. 35 с.
  18. Томина Е.В., Миттова И.Я., Бурцева Н.А., Сладкопевцев Б.В. Способ синтеза люминофора на основе ортованадата иттрия. Патент на изобретение RU 2548089 C1, 10.04.2015. Заявка № 2013150387/05 от 12.11.2013.
  19. Томина Е.В., Перов Н.С., Миттова И.Я., Алехина Ю.А., Стекленева О.В., Куркин Н.А. // Изв. РАН. Сер. хим. 2020. № 5. С. 941.
  20. JCPDC PCPDFWIN: A Windows Retrieval/Display program for Accessing the ICDD PDF – 2 Data base, International Centre for Diffraction Data, 1997.
  21. Brandon D., Kaplan U. Microstructure of materials. Research and control methods. 2004. 384 p.
  22. Byrappa K., Nirmala B., Lokanatha Rai K.M., Yoshimura M. Crystal growth, size, and morphology control of Nd:RVO4 under hydrothermal conditions // Crystal Growth Technology. Springer, 2003. P. 335.
  23. Liao Y., Zhan Y., Chen N., Du G. // J. Sol-Gel Sci. Technol. 2013. V. 65. P. 353.
  24. Общая и неорганическая химия: в 2 т. Т. 2 / Под ред. А.Ю. Цивадзе. 2-е изд.: М.: Лаборатория знаний, 2022. 495 с.
  25. Karban O.V., Ivanov S.N., Salamatov E.I., Bystrov S.G. // Inorg. Mater. 2001. V. 37. № 7. P. 711.
  26. Tomina E.V., Kurkin N.A., Korol A.K., Alekhina Yu.A., Perov N.S., Jiyu F. et al. // J. Mater. Sci. Mater. Electron. 2022. V. 33. № 32. P. 24594.
  27. Fujimoto Y., Yanagida T., Yokota Y., Chani V., Kochurikhin V.V., Yoshikawa A. // Nucl. Instrum. Methods Phys. Res. A. 2011. V. 635. P. 53.
  28. Kolesnikov I.E., Tolstikova D.V., Kurochkin A.V., Pulkin S.A., Manshina A.A., Mikhailov M.D. // J. Lumin. 2015. V. 158. P. 469.
  29. Dwivedi A., Rai E., Kumar D., Rai S.B. // ACS Omega. 2019. V. 4. P. 6903.
  30. Zhu Q., Xu Z., Wang Z., Wang X., Li X., Sun X., Li J.-G. // Cryst. Eng. Comm. 2018. V. 20. № 23. P. 3187.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of samples YVO4 (1), Ho0.05Y0.95VO4 (2), Ho0.1Y0.9VO4 (3), Ho0.15Y0.85VO4 (4).

Жүктеу (262KB)
3. Fig. 2. Energy dispersive spectra of samples YVO4 (a), Ho0.05Y0.95VO4 (b), Ho0.1Y0.9VO4 (c), Ho0.15Y0.85VO4 (d).

Жүктеу (262KB)
4. Fig. 3. SEM images of YVO4 (a), Ho0.05Y0.95VO4 (b), Ho0.1Y0.9VO4 (c), Ho0.15Y0.85VO4 (d) samples.

Жүктеу (374KB)
5. Fig. 4. TEM image (a) and particle size distribution histogram (b) of the Ho0.1Y0.9VO4 sample.

Жүктеу (222KB)
6. Fig. 5. Luminescence spectra of YVO4, Ho0.05Y0.95VO4, Ho0.1Y0.9VO4, Ho0.15Y0.85VO4 samples.

Жүктеу (338KB)

© Russian Academy of Sciences, 2025