The Simple Model of the Evolution of Magnetic and Kinetic Energy of Geodynamo
- Authors: Starchenko S.V.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
- Issue: Vol 64, No 6 (2024)
- Pages: 862-870
- Section: Articles
- URL: https://modernonco.orscience.ru/0016-7940/article/view/681557
- DOI: https://doi.org/10.31857/S0016794024060135
- EDN: https://elibrary.ru/QOAYDS
- ID: 681557
Cite item
Abstract
The induction and momentum equations are simplified to a dynamical system for the kinetic and magnetic energies in the Earth’s core. Stable stationary points of this system give a geomagnetic field of ~ 10 mT and the cosecant of the angle between the magnetic field vector and the fluid velocity vector is on average about 500 at a known speed of ~ 1 mm/sec and a generally accepted dynamo power of ~ 1 TW. With a generally known typical geomagnetic time of the order of a thousand years, harmonic secular variations of the order of several decades and rapid exponential changes of the order of several months, possibly associated with jerks, were obtained. All this is in good agreement with dynamo theory, paleomagnetic reconstructions, numerical modeling and observations. Geomagnetic energy ~ 10 mJ/kg is four orders of magnitude greater than kinetic energy. Under conditions of such dominance of magnetic energy, an analytical solution was obtained, which over time converges to stable stationary points. Apparently unlikely catastrophes with virtually zero magnetic energy near partially stable stationary points are discussed.
Full Text

About the authors
S. V. Starchenko
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Author for correspondence.
Email: sstarchenko@mail.ru
Russian Federation, Troitsk
References
- Брагинский С.И., Магнитная гидродинамика земного ядра // Геомагнетизм и аэрономия. Т. 4. № 5. С. 898−916. 1964.
- Водинчар Г.М. Использование собственных мод колебаний вязкой вращающейся жидкости в задаче крупномасштабного динамо // Вестн. КРАУНЦ. Физ.-мат. науки. Выпуск 2(7). С. 33–42. 2013. https://doi.org/
- Старченко С.В., Рузмайкин А.А. Кинематическое – турбулентное геодинамо средних полей // Геомагнетизм и аэрономия. Т. 28. № 3. С. 475−490. 1988.
- Старченко С.В. Наблюдательная оценка магнитного поля и параметров геодинамо под поверхностью ядра Земли // Геомагнетизм и аэрономия. T. 55. № 5. С. 712−718. 2015. https://doi.org/10.7868/s0016794015050181
- Старченко С.В. Энергетические параметры геодинамо совместимые с аналитическими, численными, палеомагнитными моделями и наблюдениями // Физика Земли. № 5. С. 1−15. 2017. https://doi.org/10.7868/s0002333717050131
- Старченко С.В., Яковлева С.В. Двухвековая эволюция и статистика времен вариаций энергии потенциального геомагнитного поля // Геомагнетизм и аэрономия. T. 61. № 5. С. 661−671. 2021. https://doi.org/10.31857/s0016794021050138
- Старченко С.В., Смирнов А.Ю. Объемные токи современного магнитного диполя в ядре Земли // Физика Земли. № 4. С. 42-46. 2021. https://doi.org/10.31857/S0002333721040086
- Юшков Е.В., Соколов Д.Д. Инверсии геомагнитного поля и динамо-всплески в рамках простой модели геодинамо // Физика Земли. № 4. С. 121–126. 2018.
- Arneitz P., Leonhardt R., Egli R., Fabian K. Dipole and Nondipole Evolution of the Historical Geomagnetic Field From Instrumental, Archeomagnetic, and Volcanic Data // JGR Solid Earth. V. 126. issue 10 e2021JB022565. 2021. https://doi.org/10.1029/2021jb022565
- Aubert J. State and evolution of the geodynamo from numerical models reaching the physical conditions of Earth’s core // Geoph. J. Int. V. 235 (1). P. 468−487. 2023. https://doi.org/10.1093/gji/ggad229
- Aubert J., Finlay C.C. Geomagnetic jerks and rapid hydromagnetic waves focusing at Earth’s core surface // Nat. Geosci. V. 12. P. 393–398. 2019. https://doi.org/10.1038/s41561-019-0355-1
- Bouligand C., Gillet N., Jault D., Schaeffer N., Fournier A., Aubert J. Frequency spectrum of the geomagnetic field harmonic coefficients from dynamo simulations // Geoph. J. Int. V. 207. P. 1142–1157. 2016. https://doi.org/10.1093/gji/ggw326
- Braginsky S.I., Roberts P.H. Equations governing convection in the Earth’s core and the geodynamo // Geoph. Astroph. Fluid Dyn. V. 79. P. 1–97. 1995. https://doi.org/10.1080/03091929508228992
- Buffett B.A., Bloxham J. Energetics of numerical geodynamo models // Geoph. J. Int. V. 149. P. 211–224. 2002. https://doi.org/10.1046/j.1365-246x.2002.01644.x
- Christensen U., Aubert J., Hulot G. Conditions for Earth-like geodynamo models // Earth Planet. Sci. Lett. V. 296. P. 487–496. 2010. https://doi.org/10.1016/j.epsl.2010.06.009
- Dumberry M., Mound J. Inner core–mantle gravitational locking and the super-rotation of the inner core // Geophys. J. Int. V. 181. P. 806–817. 2010. https://doi.org/10.1111/j.1365-246x.2010.04563.x
- Glatzmaier G.A., Roberts P.H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle // Phys. Earth Planet. Int. V. 91(1–3). P. 63–75. 1995.
- Gwirtz K., Morzfeld M., Fournier A., Hulot G. Can one use Earth’s magnetic axial dipole field intensity to predict reversals? // Geophys. J. Int. V. 225. P. 277–297. 2021. https://doi.org/10.1093/gji/ggaa542
- Jacobs J.A. The Earth’s core // Academic Press, London, New York, San Francisco. 1975.
- Krause F., Rädler K.-H. Mean-field magnetohydrodynamics and dynamo theory // Pergamon Press, Oxford. 1980.
- Lowes F.J. Possible evidence on core evolution from geomagnetic dynamo theories // Phys. Earth Planet. Int. V. 2. P. 382–385. 1970.
- Moffatt K.H., Dormy E. Self-exciting fluid dynamos // Cambridge texts in applied mathematics. Cambridge University Press, Cambridge. 2019. https://doi.org/10.1080/03091929.2019.1690203
- Shebalin J.V. Magnetohydrodynamic turbulence and the geodynamo // Phys. Earth Planet. Inter. V. 285. P. 59−75. 2018. https://doi.org/10.3390/fluids6030099
- Panovska S., Finlay C.C., Hirt A.M. Observed periodicities and the spectrum of field variations in Holocene magnetic records // Earth Planet. Sci. Lett. V. 379. P. 88–94. 2013. https://doi.org/10.1016/j.epsl.2013.08.010
- Starchenko S.V. Analytic scaling laws in planetary dynamo models // Geoph. Astroph. Fluid Dyn. V. 113. № 1−2. P. 71−79. 2019. https://doi.org/10.1080/03091929.2018.1551531
- Starchenko S.V. Analytic base of geodynamo-like scaling laws in the planets, geomagnetic periodicities and inversions // Geomagnetism and Aeronomy. V. 54. № 6. P. 694–701. 2014. https://doi.org/10.1080/03091929.2018.1551531
- Starchenko S.V., Jones C.A. Typical velocities and magnetic field strengths in planetary interiors // Icarus. V. 157 (2). P. 426−435. 2002. https://doi.org/10.1006/icar.2002.6842
- Wicht J., Sanchez S. Advances in geodynamo modeling // Geoph. Astroph. Fluid Dyn., V. 113. № 1−2. P. 2−50. 2019. https://doi.org/10.1080/03091929.2019.1597074
Supplementary files
