Thermophysical Properties of High-Strength Low-Alloyed Pipe Steel
- Authors: Urtsev N.V.1,2,3, Platov S.I.3, Shmakov A.V.1, Ryzhkov M.A.2, Lobanov M.L.2,4
-
Affiliations:
- Research and Technology Center “Ausferr”
- Ural Federal University named after the First President of Russia B. N. Yeltsin
- Nosov Magnitogorsk State Technical University
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Issue: Vol 125, No 11 (2024)
- Pages: 1452-1458
- Section: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://modernonco.orscience.ru/0015-3230/article/view/681762
- DOI: https://doi.org/10.31857/S0015323024110146
- EDN: https://elibrary.ru/ILSFVK
- ID: 681762
Cite item
Abstract
Thermo-mechanical controlled processing (TMCP) of low-carbon low-alloy pipe steels is used to attain the required level of mechanical properties in rolled plates designed for pipe production, thereby ensuring the operational stability and reliability of trunk pipelines. The TMCP involves the hot deformation of austenite followed by accelerated cooling, during which the γ → α-transformation occurs. The technological capabilities of contemporary plate mills permit developing and implementing information systems for the control of steel structure and, consequently, its properties. The reliability and accuracy of such systems can be enhanced by using the correct thermophysical parameters of steels. In the present work the critical temperatures, temperature dependences of heat capacities of main phases, and thermal effects of phase transformations in specimens of 05G2MB (wt % ~ 0.05 C; ≤2.0 Mn; ~ 0.2 Mo; ~ 0.05 Nb) high-strength low-alloyed pipe steel have been determined employing differential scanning calorimetry method, dilatometric analysis, and calculations using Thermo-Calc software. It has been demonstrated that the thermal effect of magnetic transformation exhibits a markedly greater value than that of polymorphic phase transformation.
Full Text

About the authors
N. V. Urtsev
Research and Technology Center “Ausferr”; Ural Federal University named after the First President of Russia B. N. Yeltsin; Nosov Magnitogorsk State Technical University
Author for correspondence.
Email: n.urtsev@ausferr.ru
Russian Federation, Magnitogorsk, 455000; Ekaterinburg, 620002; Magnitogorsk, Chelyabinsk Region, 455000
S. I. Platov
Nosov Magnitogorsk State Technical University
Email: n.urtsev@ausferr.ru
Russian Federation, Magnitogorsk, Chelyabinsk Region, 455000
A. V. Shmakov
Research and Technology Center “Ausferr”
Email: n.urtsev@ausferr.ru
Russian Federation, Magnitogorsk, 455000
M. A. Ryzhkov
Ural Federal University named after the First President of Russia B. N. Yeltsin
Email: n.urtsev@ausferr.ru
Russian Federation, Ekaterinburg, 620002
M. L. Lobanov
Ural Federal University named after the First President of Russia B. N. Yeltsin; Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: n.urtsev@ausferr.ru
Russian Federation, Ekaterinburg, 620002; Ekaterinburg, 620108
References
- Lobanov M.L., Zorina M.A., Karabanalov M.S., Urtsev N.V., Redikultsev A.A. Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP // Metals. 2023. V. 13. № 6. P. 1121.
- Pumpyanskii D.A., Pyshmintsev I.Y., Lobanov M.L., Urtsev N.V., Denisov S.V., Urtsev V.N. Effect of Finish Rolling Temperature on the Texture and Fracture Resistance of Low-Carbon High-Strength Pipe Steels during Thermomechanical Treatment // Metal Sci. Heat Treatment. 2023. V. 65. № 5–6. P. 330–337.
- Petersen Cl., Corbett K., Fairchild D. Improving long-distance gas transmission economics. X120 development over-view / Proceedings of 4th International Pipeline Conference. Ostend. 2004. Р. 3–29.
- Столхейм Д. Дж. Современные схемы легирования и практика производства высокопрочных сталей для магистральных нефтегазопроводов. Часть I // Металлург. 2013. № 11. С. 53–66.
- Paravicini В.E., Anelli E., Paggi A., Cuonzo S.D. Development of heavy-wall seamless pipes with improved toughness and hardness control / 6-th International pipeline technology conference. Ostend, Belgium, 2013. Р. 3–13.
- Хулка К., Хайстеркамп Ф. Тенденции азработки сталей для труб большого диаметра // Сталь. 1997. № 10. С. 62–67.
- Morozov Yu.D., Nastich S.Yu., Matrosov M.Yu., Chevskaya O.N. Obtaining high-quality properties of rolled material for large-diameter pipes based on formation of ferrite-bainite microstructure // Metallurgist. 2008. V. 52. № 1–2. P. 21–28.
- Matrosov M.Yu., Kichkina A.A., Efimov A.A., Efron L.I., Bagmet O.A. Simulating structure-forming processes in tube steels during controlled rolling with accelerated cooling // Metallurgist. 2007. V. 51. № 7–8. P. 367–376.
- Nastich S.Y., Morozov Y.D., Matrosov M.Y., Denisov S.V., Galkin V.V., Stekanov P.A. Assimilation of production in an MMK 5000 mill of thick rolled sheet from low-alloy steels with improved strength and cold resistance properties // Metallurgist. 2012. V. 55. № 11–12. P. 810–818.
- Пышминцев И.Ю., Смирнов М.А. Структура и свойства сталей для магистральных трубопроводов. Екатеринбург: УМЦ УПИ, 2019. 242 с.
- Platov S.I., Gorbatyuk S.M., Lobanov M.L., Maslennikov K.B., Urtsev N.V., Dema R.R., Zvyagina E.Y. Mathematical Model of the Accelerated Cooling of Metal in Thick-Plate Hot Rolling // Metallurgist. 2022. V. 66. № 3–4. P. 462–468.
- Lobanov M.L., Khotinov V.A., Danilov S.V., Stepanov S.I., Urtsev V.N., Urtsev N.V., Platov S.I. Tensile Deformation and Fracture Behavior of API-5L X70 Line Pipe Steel // Materials. 2022. V. 15. № 2. P. 501.
- Gorbachev I.I., Korzunova E.I., Popov V.V., Khabibulin D.M., Urtsev N.V. Simulation of Austenite Grain Growth in Low-Alloyed Steels upon Austenitization // Phys. Met. Metal. 2023. V. 124. № 3. P. 290–295.
- Морозов Ю.Д., Матросов М.Ю., Арабей А.Б., Настич С.Ю. Высокопрочные трубные стали нового поколения с феррито — бейнитной структурой // Металлург. 2008. № 8. С. 39–42.
- Пышминцев И.Ю., Столяров В.И., Гервасьев А.М., Харитоновский В.В., Великоднев В.Я. Особенности структуры и свойств опытных партий труб категории прочности К65 (Х80), изготовленных для комплексных испытаний // Наука и техника в газовой промышленности. 2009. № 1. C. 56–61.
- Зельдович В.И., Хомская И.В., Фролова Н.Ю., Хейфец А.Э., Абдуллина Д.Н., Петухов Е.А., Смирнов Е.Б., Шорохов Е.В., Кленов А.И., Пильщиков А.А. Структура и механические свойства аустенитной нержавеющей стали, полученной методом селективного лазерного плавления // ФММ. 2021. Т. 122. № 5. С. 527–534.
- Агажанов А.Ш., Самошкин Д.А., Станкус С.В. Теплопроводность и температуропроводность железа в интервале температур 300–1700 K // ФММ. 2023. Т. 124. № 12. С. 1149–1158.
- Massalski T.B., Joanne L.M., Bennett L.H., Baker H. Binary alloy phase diagrams. Ohio: ASM, 1986. 2224 p.
- Лившиц Б.Г., Крапошин В.С. Физические свойства металлов и сплавов. М.: МАШГИЗ, 1953. 352 с.
- Геллер Ю.А., Рахштадт А.Г. Материаловедение: Методы анализа, лабораторные работы и задачи. Учебное пособие для вузов. М.: Металлургия, 1989. 456 с.
- Лобанов М.Л., Платов С.И., Зорина М.А., Урцев Н.В., Масленников К.Б. Влияние режимов контролируемой термомеханической обработки на структурно-текстурные состояния низкоуглеродистой низколегированной стали // Металловедение и термич. обр. металлов. 2023. № 8(818). С. 27–35.
- ASTM E1269–11 (2018). Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. ASTM International, 2018. 6 p.
- ASTM A1033–18. Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations. ASTM International, 2018. 14 p.
- Романов П.В., Радченко В.П. Превращение аустенита при непрерывном охлаждении стали: Атлас термокинетических диаграмм. Ч. 1. Новосибирск: Изд-во Сиб. отд. АН СССР, 1960. 51 с.
Supplementary files
