The Critical Temperature of Superconducting Aluminum Films
- Authors: Arutyunov K.Y.1,2, Sedov E.A.1,3, Zavialov V.V.1,2, Stavrinidis A.4,5, Stavrinidis G.4,5, Chatzopoulos Z.4,5, Adikimenakis A.4,5, Konstantinidis G.4,5, Florini N.6, Chatzopoulou P.7, Kehagias T.7, Dimitrakopulos G.P.7, Komninou F.7
-
Affiliations:
- National Research University Higher School of Economics
- Kapitsa Institute for Physical Problems, Russian Academy of Sciences
- Lebedev Physical Institute, Russian Academy of Sciences
- Institute of Electronic Structures and Lasers, Hellenic Foundation for Research and Technology – Hellas (FORTH)
- Department of Physics, University of Crete
- Department of Physics, Aristotle University of Thessaloniki, Thessaloniki
- Department of Physics, Aristotle University of Thessaloniki
- Issue: Vol 124, No 1 (2023)
- Pages: 56-60
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://modernonco.orscience.ru/0015-3230/article/view/662775
- DOI: https://doi.org/10.31857/S001532302260157X
- EDN: https://elibrary.ru/KRKHMQ
- ID: 662775
Cite item
Abstract
The R(T) dependences of thin superconducting aluminum films deposited on leucosapphire and gallium arsenide substrates by electron beam sputtering and molecular beam epitaxy have been experimen-tally studied. Regardless of morphology, a noticeable increase in the critical temperature of the supercon-ducting transition with a decrease in the film thickness is found. The effect is interpreted as a manifestation of the quantum size effect.
About the authors
K. Yu. Arutyunov
National Research University Higher School of Economics; Kapitsa Institute for Physical Problems, Russian Academy of Sciences
Email: karutyunov@hse.ru
Moscow, 101000 Russia; Moscow, 119334 Russia
E. A. Sedov
National Research University Higher School of Economics; Lebedev Physical Institute, Russian Academy of Sciences
Email: karutyunov@hse.ru
Moscow, 101000 Russia; Moscow, 119991 Russia
V. V. Zavialov
National Research University Higher School of Economics; Kapitsa Institute for Physical Problems, Russian Academy of Sciences
Email: karutyunov@hse.ru
Moscow, 101000 Russia; Moscow, 119334 Russia
A. Stavrinidis
Institute of Electronic Structures and Lasers, Hellenic Foundation for Research and Technology – Hellas (FORTH); Department of Physics, University of Crete
Email: karutyunov@hse.ru
Heraklion, GR-700 13 Greece; Heraklion, GR-700 13 Greece
G. Stavrinidis
Institute of Electronic Structures and Lasers, Hellenic Foundation for Research and Technology – Hellas (FORTH); Department of Physics, University of Crete
Email: karutyunov@hse.ru
Heraklion, GR-700 13 Greece; Heraklion, GR-700 13 Greece
Z. Chatzopoulos
Institute of Electronic Structures and Lasers, Hellenic Foundation for Research and Technology – Hellas (FORTH); Department of Physics, University of Crete
Email: karutyunov@hse.ru
Heraklion, GR-700 13 Greece; Heraklion, GR-700 13 Greece
A. Adikimenakis
Institute of Electronic Structures and Lasers, Hellenic Foundation for Research and Technology – Hellas (FORTH); Department of Physics, University of Crete
Email: karutyunov@hse.ru
Heraklion, GR-700 13 Greece; Heraklion, GR-700 13 Greece
G. Konstantinidis
Institute of Electronic Structures and Lasers, Hellenic Foundation for Research and Technology – Hellas (FORTH); Department of Physics, University of Crete
Email: karutyunov@hse.ru
Heraklion, GR-700 13 Greece; Heraklion, GR-700 13 Greece
N. Florini
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki
Email: karutyunov@hse.ru
Thessaloniki, GR-541 24 Greece
P. Chatzopoulou
Department of Physics, Aristotle University of Thessaloniki
Email: karutyunov@hse.ru
Thessaloniki, GR-541 24 Greece
T. Kehagias
Department of Physics, Aristotle University of Thessaloniki
Email: karutyunov@hse.ru
Thessaloniki, GR-541 24 Greece
G. P. Dimitrakopulos
Department of Physics, Aristotle University of Thessaloniki
Email: karutyunov@hse.ru
Thessaloniki, GR-541 24 Greece
F. Komninou
Department of Physics, Aristotle University of Thessaloniki
Author for correspondence.
Email: karutyunov@hse.ru
Thessaloniki, GR-541 24 Greece
References
- Shalnikov A. Superconducting thin films // Nature. 1938. V. 142. P. 74.
- Ginzburg V.L. Concerning Surface Superconductivity // JETP. 1964. V. 47. P. 2318–2320.
- Thomson C.J., Blatt J.M. Shape Resonances in Superconductors – Simplified Theory // Phys. Letters. 1963. V. 5. № 1. P. 6–9.
- Blatt J.M., Thomson C.J. Shape Resonances in Superconducting Thin Films // Phys. Rev. Letter. 1963. V. 10. № 8. P. 332–334.
- Shanenko A.A., Croitoru M.D., Peeters F.M. Quantum-size effects on Tc in superconducting nanofilms // Europhysics Letters. 2006. V. 76. № 3. P. 498–504.
- Shanenko A.A., Croitoru M.D., Peeters F.M. Oscillations of the superconducting temperature induced by quantum well states in thin metallic films: Numerical solution of the Bogoliubov–de Gennes equations // Phys. Rev. B. 2007. V. 75. P. 014519–014529.
- Arutyunov K.Yu., Zavialov V.V., Sedov E.A., Golokole-nov I.A., Zarudneva A.A., Shein K.V., Trun’kin I.N., Vasiliev A.L., Konstantinidis G., Stavrinidis A., Stavrinidis G., Croitoru M.D., Shanenko A.A. Nanoarchitecture: Toward Quantum-Size Tuning of Superconductivity // Phys. Status Solidi RRL. 2019. V. 13. № 1800317. P. 1–5.
- Orr B.G., Jaeger H.M., Goldman A.M. Transition-Temperature Oscillations in Thin Superconducting Films // Phys. Rev. Lett. 1984. V. 53. № 21. P. 2046–2049.
- Yang Guo, Yan-Feng Zhang, Xin-Yu Bao, Tie-Zhu Han, Zhe Tang, Li-Xin Zhang, Wen-Guang Zhu, E.G. Wang, Qian Niu, Z.Q. Qiu, Jin-Feng Jia, Zhong-Xian Zhao, Qi-Kun Xue. Superconductivity modulated by quantum size effects // Science. 2004. V. 306. P. 1915–1917.
- Shanenko A.A, Croitoru M.D., Zgirski M., Peeters F.M., Arutyunov K.Yu. Size dependent enhancement of superconductivity in nanowires // Phys. Rev. B. 2006. V. 74. № 052502. P. 1–4.
- Parmenter R. H. Size Effect in a Granular Superconductor // Phys. Rev. 1968. V. 166. № 2. P. 392–396.
- Roger W., Abeles B. Superconductivity in Granular Aluminum Films. // Phys. Rev. 1967. V. 168. № 2. P. 444–450.
- Deutscher G., Fenichel H., Gershenson M., Grünbaum E., Ovadyahu Z. Transition to Zero Dimensionality in Granular Aluminum Superconducting Films // J. Low Temp. Phys. 1973. V. 10. № 1/2. P. 231–243.
- Matsuo S., Sugiura H., Noguchi S. Superconducting Transition Temperature of Aluminum, Indium, and Lead Fine Particles // J. Low Temp. Phys. 1974. V. 15. № 5/6. P. 481–491.
- Wells G.L., Jackson J.E., Mitchell E.N. Superconducting Tunnelling in Single-Crystal and Polycrystal Films of Aluminum // Phys. Rev. B. 1970. V. 1. № 9. P. 3636–3644.
- Chubov P.N., Eremenko V.V., Pilipenko Yu.A. Dependence of The Critical Temperature and Energy Gap on The Thickness of Superconducting Aluminum Films // Soviet Physics JETP. 1969. V. 28. № 3. P. 389–395.
- Lock J.M. Penetration of Magnetic Fields into Superconductors III. Measurements on Thin Films of Tin, Lead and Indium // Proc. R. Soc. Lond. 1951. V. A 208. P. 391–408.
- Cooper L.N. Superconductivity in the Neighborhood of Metallic Contacts // Phys. Rev. Lett. 1961. V. 6. P. 869–873.
- De Gennes P.G. Boundary Effects in Superconductors // Rev. Mod. Phys. 1964. V. 36. P. 225 –238.
- Суслов И.М. “Переход Андерсона” в сверхпроводящих сверхрешетках // СФХТ. 1991. Т. 4 № 6. С. 1065–1072.
- Суслов И.М. Поверхностные эффекты в сверхпроводниках // СФХТ. 1991. Т. 4. № 11. С. 2093–2106.
- Кротов Ю.А., Суслов И.М. О возможном пути повышения Tc оксидных сверхпроводников // ЖЭТФ. 1993. Т. 103 № 4. С. 1394–1403.
Supplementary files
