Bioclimatic modeling of altitudinal structure of vegetation cover in Altai-Sayan orobiome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Identification of the altitudinal-belt organization of vegetation cover in mountains based on the climatopes of major communities which form the belts makes it possible to construct a strong frame, the elements of which are formed by the most important ecological and geographical factors that support modern botanical diversity and its spatial structure. Climate, considered as a key factor of vegetation organization at the level of altitudinal spectra, belts and their communities, characterizes the potential conditions under which sustainable support of established level of biodiversity and structure of mountain ecosystems is possible in the long term within the framework of orobiomes as integral phenomena of ecosystem diversity. The content of orobiomes, along with a certain integrity in the altitudinal spectrum, shows differences in diversity, which are best marked by the types of altitudinal zonality with a specific composition of altitudinal spectra, the altitudinal limits of distribution of the belts and their internal content (level of botanical diversity, ratio of basic and associated communities, prevailing ecological-phytocoenotic series of communities, development of heterogeneous structures and dynamic categories).

This study is devoted to evaluation of the influence of climate on modern spatial structure of mountain ecosystems of the Altai-Sayan orobiome and vegetation cover as their basic component, as well as forecasting the transformation of vegetation under climate change. Using original field data (geobotanical relevés of communities) and bioclimatic indicators (global climate model CHELSA) for key areas covering full altitudinal-belt spectra of vegetation of the West Sayan, East Sayan, West Altai and Salair-Kuznetsk types, bioclimatic models of altitudinal zones and background typological divisions of orobiome vegetation have been created. Discriminant analysis has been used as a method for determining the probability of development of typological units of basic vegetation (vegetation formations, groups and classes of formations, types of vegetation) and the altitudinal belts based on their factor-indicative dependencies with key bioclimatic variables (average long-term annual temperature, average long-term annual precipitation, continentality index). The identified potential climatic conditions made it possible to construct a reference climatic framework model to characterize and analyze the key regional features of the modern structure of vegetation diversity of the Altai-Sayan orobiome (it is limited by the average annual temperature from –6 to +3°C, average annual precipitation from 500 to 1800 mm, continentality index from 33 to 38). Differences in climatopes of altitudinal-belt divisions of vegetation of forest-steppe, subtaiga, chern taiga, mountain taiga, subalpine and alpine-tundra complexes have been determined according to the altitudinal gradient, as well as between the altitudinal spectra of different types of zonation. Differences in the resistance of vegetation to climate change have been found in accordance with the altitudinal gradient. An increasing degree of transformation in the composition and structure of communities occurs from low-mountain belts to high-mountain ones. Within the belts, the communities of the edge parts of their climatopes at the contact of altitudinal-belt units are more susceptible to processes of vegetation transformation.

Full Text

Restricted Access

About the authors

M. V. Bocharnikov

M.V. Lomonosov Moscow State University

Author for correspondence.
Email: maxim-msu-bg@mail.ru
Russian Federation, Leninskie gory, 1, Moscow, 119991

References

  1. Aynekulu E., Aerts R., Moonen P., Denich M., Gebrehiwot K., Vagen T-G., Mekuria W., Boehmer H.J. 2012. Altitudinal variation and conservation priorities of vegetation along the Great Rift Valley escarpment, northern Ethiopia. – Biodiversity and Conservation. 21: 2691–2707. https://doi.org/10.1007/s10531-012-0328-9
  2. Biomes of Russia. Map (s. 1:7500000). 2018. Second revised edition. Moscow.
  3. Bocharnikov M.V. 2019. Role of climate in the spatial structure of vegetation of the Kodar-Kalar orobiome. – Contemporary Problems of Ecology. 12(3): 193–203. https://doi.org/10.1134/S1995425519030028
  4. Bocharnikov M.V. 2022. Relationship between Phytocenotic Diversity of the Northeastern Transbaikal Orobiome and Bioclimatic Parameters. – Doklady Biological Sciences. 507: 281–295. https://doi.org/10.1134/S0012496622060011
  5. Box E.O. 1995. Factors determining distributions of tree species and plant functional types. – Vegetatio. 121: 101–116. https://doi.org/10.1007/978-94-011-0343-5_10
  6. Chytrý M., Danihelka J., Kubešová S., Lustyk P., Ermakov N., Hájek M., Hájková P., Kočí M., Otýpková Z., Roleček J., Řezníčková M., Šmarda P., Valachovič M., Popov D., Pišút I. 2008. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. – Plant Ecology. 196: 61–83. https://doi.org/10.1007/s11258-007-9335-4
  7. Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. – Australian Journal of Ecology. 18: 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
  8. Davydova N.D. 2022. Change in the Components of Steppe Geosystems in the Southwestern Transbaikal Region with Climate Warming. – Arid Ecosystems. 12: 1–7. https://doi.org/10.1134/S2079096122010036
  9. Diao C., Liu Y., Zhao L., Zhuo Ga, Zhang Y. 2021. Regional-scale vegetation-climate interactions on the Qinghai-Tibet Plateau. – Ecological Informatics. 65: 101413. https://doi.org/10.1016/j.ecoinf.2021.101413
  10. Drobushevskaya O.V., Nazimova D.I. 2006. Klimaticheskie varianty svetlokhvoynoy nizkogornoy podtaygi Yuzhnoy Sibiri [Climatic variants of the light-coniferous low-mountain subtaiga of Southern Siberia]. – Geography and natural resources. 2: 21–27 (In Russ.).
  11. Ermakov N.B. 2003. Raznoobrazie boreal’noy rastitel’nosti Severnoy Azii. Gemiboreal’nye lesa. Klassifikatsiya i ordinatsiya [Diversity of boreal vegetation of Northern Asia. Hemiboreal forests. Classification and ordination]. Novosibirsk. 232 p. (In Russ.).
  12. Gavilan R.G. 2005. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. – International Journal of Biometeorology. 50: 111–120. https://doi.org/10.1007/s00484-005-0271-5
  13. Gopar-Merino L.F., Velazquez A., Gimenez de Azcarate J. 2015. Bioclimatic mapping as a new method to assess effects of climatic change. – Ecosphere. 6(1): 1–12. https://doi.org/10.1890/ES14-00138.1
  14. Grebenshchikov O.S. 1974. Experience of climatic characteristics of the main plant formations of the Caucasus. – Bot. Zhurn. 59(2): 161–173 (In Russ.).
  15. Hais M., Chytrý M., Horsak M. 2016. Exposure-related forest-steppe: A diverse landscape type determined by topography and climate. – Journal of Arid Environments. 135: 75–84. https://doi.org/10.1016/j.jaridenv.2016.08.011
  16. Holdridge L.R. 1967. Life zone ecology. San Jose. 206 p.
  17. Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R.W., Zimmermann N.E., Linder P.H., Kessler M. 2017. Climatologies at high resolution for the earth’s land surface areas. – Scientific Data. 4: 170122. https://doi.org/10.1038/sdata.2017.122
  18. Katenin A.E. 1988. Classification of heterogeneous territorial units of vegetation cover using the example of vegetation of the tundra zone. – Bot. Zhurn. 73(2): 186–197 (In Russ.).
  19. Kharuk V.I., Ranson K.J., Im S.T., Dvinskaya M.L. 2009. Response of Pinus sibirica and Larix sibirica to climate change in southern Siberian alpine forest-tundra ecotone. – Scandinavian Journal of Forest Research. 24(2): 130–139. https://doi.org/10.1080/02827580902845823
  20. Klinge M., Dulamsuren C., Erasmi S., Karger D.N., Hauck M. 2018. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia. – Biogeosciences. 15: 1319–1333. https://doi.org/10.5194/bg-15-1319-2018
  21. Köppen W. 1936. Das geographische System der Klimate. – In: Köppen W., Geiger R. (Hrsg.): Handbuch der Klimatologie, Bd. 1, Teil C. Borntraeger, Berlin. 44 p.
  22. Kuminova A.V. 1960. Rastitel’nyy pokrov Altaya [Vegetation cover of Altai]. Novosibirsk. 450 p. (In Russ.).
  23. Molozhnikov V.N. 1986. Rastitel’nye soobshchestva Pribaykal’ya [Plant communities of the Baikal region]. Novosibirsk. 272 p. (In Russ.).
  24. Nakamura Y., Krestov P.V. 2007. Biogeographical diversity of alpine vegetation in the oceanic regions of Northeast Asia. – In: Berichte der REINHOLD-TUXEN-GESELLSCHAFT. Vol. 19. P. 117–129.
  25. Nakamura Y., Krestov P.V., Omelko A.M. 2007. Bioclimate and vegetation complexes in Northeast Asia: a first approximation to integrated study. – Phytocoenologia. 37(3–4): 443–470. https://doi.org/10.1127/0340-269X/2007/0037-0443
  26. Namzalov B.B. 1994. Stepi Yuzhnoy Sibiri [Steppes of Southern Siberia]. Novosibirsk – Ulan-Ude. 309 p. (In Russ.).
  27. Namzalov B.B. 2021. The Most Important Biodiversity Nodes and Phytogeographic Phenomena of the Mountain Steppes of Southern Siberia. – Arid Ecosystems. 11: 238–248. https://doi.org/10.1134/S2079096121030100
  28. Nazimova D.I. 1967. Relikty nemoral’noy flory v lesakh Zapadnogo Sayana [Relics of nemoral flora in the forests of Western Sayan]. – Lesovedenie. 4: 76–87 (In Russ.).
  29. Nazimova D.I., Danilina D.M., Stepanov N.V. 2014. Biodiversity of Rain-Barrier Forest Ecosystems of the Sayan Mountains. – Botanica Pacifica. A journal of plant science and conservation. 3(1): 39–47. https://doi.org/10.17581/bp.2014.03104
  30. Nazimova D.I., Ermakov N.B., Andreeva N.M., Stepanov N.V. 2004. Kontseptual’naya model’ strukturnogo bioraznoobraziya zonal’nykh klassov lesnykh ekosistem Severnoy Evrazii [Conceptual Model of Structural Biodiversity of the Zonal Classes of Forest Ecosystems of Northern Eurasia]. – Sibirskiy ekologicheskiy zhurnal. 11(5): 745–756 (In Russ.).
  31. Nazimova D.I., Korotkov I.A., Cherednikova Yu.S. 1987. Osnovnye vysotno-poyasnye podrazdeleniya lesnogo pokrova v gorakh Yuzhnoy Sibiri i ikh diagnosticheskie priznaki [The main altitudinal divisions of forest cover in the mountains of Southern Siberia and their diagnostic characteristics]. – Chteniya pamyati V.N. Sukacheva. P. 30–64 (In Russ.).
  32. Nazimova D.I., Tsaregorodtsev V.G., Andreeva N.M. 2010. Lesorastitel’nye zony yuga Sibiri i sovremennoe izmenenie klimata [Forest zones of southern Siberia and modern climate change]. – Geography and natural resources. 2: 55–63 (In Russ.).
  33. Odum E.P. 1971. Fundamentals of Ecology. Third Edition. Philadelphia. 574 p.
  34. Ogureeva G.N. 1980. Botanicheskaya geografiya Altaya [Botanical geography of Altai]. Moscow. 192 p. (In Russ.).
  35. Ogureeva G.N. 1991. Botaniko-geograficheskoe rayonirovanie SSSR [Botanical-geographical zoning of the USSR]. Moscow. 78 p. (In Russ.).
  36. Ogureeva G.N. 1994. Strukturno-dinamicheskie kategorii v rastitel’nom pokrove gornykh territoriy [Structural-dynamic categories in the vegetation cover of mountain areas]. – Byull. MOIP. Otd. biol. 99(1): 76–85 (In Russ.).
  37. Ogureeva G.N. 1997. Struktura i dinamika rastitel’nosti vysokogornykh ekosistem Mongol’skogo Altaya [Structure and dynamics of vegetation of high-mountain ecosystems of the Mongolian Altai]. – Arid ecosystems. 3(6–7): 119–131 (In Russ.).
  38. Ogureeva G.N. 2016. Bioraznoobrazie orobiomov Severnogo Kavkaza na karte Biomy Rossii [Biodiversity of orobiomes of the North Caucasus on the map of Biomes of Russia]. – South of Russia: ecology, development. 11(1): 21–34 (In Russ.). https://doi.org/10.18470/1992-1098-2016-1-21-36
  39. Ogureeva G.N., Bocharnikov M.V. 2017. Orobiomy kak bazovye edinitsy regional’noy otsenki bioraznoobraziya gornykh territoriy [Orobiomes as basic units of regional assessment of mountain biodiversity]. – Ecosystems: ecology and dinamic. 1(2): 52–81 (In Russ.).
  40. Polikarpov N.P., Chebakova N.M., Nazimova D.I. 1986. Klimat i gornye lesa Yuzhnoj Sibiri [Climate and mountain forests of Southern Siberia]. Novosibirsk. 225 p. (In Russ.).
  41. Rahman I.U., Afzal A., Iqbal Z., Bussmann R.W., Alsamadany H., Calixto E.S, Shah G.M., Kausar R., Shah M., Ali N., Ijaz F. 2020. Ecological gradients hosting plant communities in Himalayan subalpine pastures: Application of multivariate approaches to identify indicator species. – Ecological Informatics. 60: 101–162. https://doi.org/10.1016/j.ecoinf.2020.101162
  42. Río S.d., Penas Á. 2006. Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations. – Plant Ecology. 185: 269–282. https://doi.org/10.1007/s11258-006-9103-x
  43. Rivas-Martinez, Penas A., Diaz T.E. 2004. Bioclimatic map of Europe, thermoclimatic belts. Cartographic Service. University of Leon, Spain.
  44. Rocchini D., Luque S., Pettorelli N., Bastin L., Doktor D., Faedi N., Feilhauer H., Féret J-B., Foody G.M., Gavish Y., Godinho S., Kunin W.E., Lausch A., Leitão P.J., Marcantonio M., Neteler M., Ricotta C., Schmidtlein S., Vihervaara P., Wegmann M., Nagendra H. 2018. Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring. – Methods in Ecology and Evolution. 9: 1787–1798. https://doi.org/10.1111/2041-210X.12941
  45. Sedel’nikov V.P. 1988. Vysokogornaya rastitel’nost’ Altae-Sayanskoy gornoy oblasti [High mountain vegetation of the Altai-Sayan mountain region]. Novosibirsk. 222 p. (In Russ.).
  46. Smirnova M.A., Bocharnikov M.V. 2021. Ecosystem, vegetation and soil diversity of the mountain forest-steppe of West Altai (a case study of the Tigirek State Natural Reserve). – IOP Conference Series: Earth and Environmental Science. 908(1): 012028. https://doi.org/10.1088/1755-1315/908/1/012028
  47. Sochava V.B. 1979. Rastitel’nyy pokrov na tematicheskikh kartakh [Vegetation cover on thematic maps]. Novosibirsk. 189 p. (In Russ.).
  48. Sochava V.B. 1980. Geograficheskie aspekty sibirskoy tajgi [Geographical aspects of the Siberian taiga]. Novosibirsk. 256 p. (In Russ.).
  49. Sukachev V.N., Zonn S.V. 1961. Metodicheskie ukazaniya k izucheniyu tipov lesa [Guidelines for studying forest types]. Moscow. 144 p. (In Russ.).
  50. Tchebakova N.M., Blyakharchuk T.A., Parfenova E.I. 2009. Reconstruction and prediction of climate and vegetation change in the Holocene in the Altai–Sayan mountains, Central Asia. – Environmental Research Letters. 4: 045025. https://doi.org/10.1088/1748-9326/4/4/045025
  51. Valentini R., Zamolodchikov D., Reyer C., Noce S., Santini M., Lindner M. 2020. Climate change in Russia – past, present and future. – In: Russian forests and climate change. What Science Can Tell Us 11. European Forest Institute. P. 45–52. https://doi.org/10.36333/wsctu11
  52. Walter H., Breckle S.-W. 1991. Okologishe Grundlagen in global sicht. Stuttgart: G. Fischer. 586 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Key areas for bioclimatic modeling of vegetation with points of geobotanical relevés of communities.

Download (731KB)
3. Fig. 2. Bioclimatic models of vegetation in the West Sayan key area: a – typological subdivisions of vegetation – see Table 3; b – resistance of vegetation to the climate change.

Download (620KB)
4. Fig. 3. Bioclimatic models of vegetation in the East Sayan key area: a – typological subdivisions of vegetation – see Table 3; b – resistance of vegetation to the climate change.

Download (517KB)
5. Fig. 4. Bioclimatic models of vegetation in the West Altai key area: a – typological subdivisions of vegetation – see Table 3; b – resistance of vegetation to the climate change.

Download (500KB)
6. Fig. 5. Bioclimatic models of vegetation in the Kuznetsk Alatau key area: a – typological subdivisions of vegetation – see Table 3; b – resistance of vegetation to the climate change.

Download (775KB)
7. Absolute altitude (m)

Download (72KB)
8. Average annual temperature (°C)

Download (63KB)
9. Average annual precipitation (mm)

Download (71KB)
10. Continentality index

Download (53KB)

Copyright (c) 2024 Russian Academy of Sciences