The Effect of Ethidium Bromide on Purinergic Modulation of Myoneural Transmission and Skeletal Muscle Contraction
- Autores: Gorshunova A.N1, Teplov A.Y.2, Grishin S.N2, Mukhamedzyanov R.D2, Khairullin A.E2,3
-
Afiliações:
- Kazan Law Institute of the Ministry of Internal Affairs of Russia
- Kazan State Medical University
- Kazan Federal University
- Edição: Volume 69, Nº 6 (2024)
- Páginas: 1300-1305
- Seção: Complex systems biophysics
- URL: https://modernonco.orscience.ru/0006-3029/article/view/676186
- DOI: https://doi.org/10.31857/S0006302924060151
- EDN: https://elibrary.ru/NKKNPG
- ID: 676186
Citar
Resumo
Palavras-chave
Sobre autores
A. Gorshunova
Kazan Law Institute of the Ministry of Internal Affairs of RussiaKazan, Russia
A. Teplov
Kazan State Medical UniversityKazan, Russia
S. Grishin
Kazan State Medical UniversityKazan, Russia
R. Mukhamedzyanov
Kazan State Medical UniversityKazan, Russia
A. Khairullin
Kazan State Medical University; Kazan Federal University
Email: khajrulli@ya.ru
Kazan, Russia
Bibliografia
- Sigmon J. and Larcom L. L. The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis. Electrophoresis, 17 (10), 1524—1527 (1996). doi: 10.1002/elps.1150171003
- Перечень химических и биологических веществ, прошедших государственную регистрацию. Токсикологич. вестн., 1 (142), 48 (2007).
- Liu J., Li X., and Ke A. High-mobility group box-1 induces mechanical pain hypersensitivity through astrocytic connexin 43 via the toll-like receptor-4/JNK signaling pathway. Synapse, 75 (2), e22184 (2020). doi: 10.1002/syn.22184
- Dong R., Han Y., Jiang L., Liu S., Zhang F., Peng L., Wang Z., Ma Z., Xia T., and Gu X. Connexin 43 gap junction-mediated astrocytic network reconstruction attenuates isoflurane-induced cognitive dysfunction in mice. J. Neuroinflammation, 19 (1), 64 (2022). doi: 10.1186/s12974-022-02424-y
- Komatsu K., Uchida K., and Satoh S. Neurotrophic influences are not affected by miniature end-plate potentials. Exp. Neurol., 83 (1), 33—41 (1984). doi: 10.1016/0014-4886(84)90043-8
- Smith K. J., Felts P. A., and John G. R. Effects of 4-ami-nopyridine on demyelinated axons, synapses and muscle tension. Brain, 123 (1), 171-184 (2000). doi: 10.1093/brain/123.1.171
- Sterz R., Hermes M., Peper K., and Bradley R. J. Effects of ethidium bromide on the nicotinic acetylcholine receptor. Eur. J. Pharmacol., 80 (4), 393-399 (1982). doi: 10.1016/0014-2999(82)90085-1
- Dreyer F., Peper K., Sterz R., Bradley R. J., and Müller K.
- D. Drug-receptor interaction at the frog neuromuscular junction. Prog. Brain Res., 49, 213-223 (1979). doi: 10.1016/S0079-6123(08)64635-X
- Peper K., Bradley R. J., and Dreyer F. The acetylcholine receptor at the neuromuscular junction. Physiol. Rev., 62 (4), 1271-1340 (1982). doi: 10.1152/physrev.1982.62.4.1271
- Dreyer F., Peper K., and Sterz R. Determination of doseresponse curves by quantitative ionophoresis at the frog neuromuscular junction. J. Physiol., 281, 395-419 (1978). doi: 10.1113/jphysiol.1978.sp012430
- Bostock H., Sherratt R. M., and Sears T. A. Overcoming conduction failure in demyelinated nerve fibres by prolonging action potentials. Nature, 274 (5669), 385-387 (1978). doi: 10.1038/274385a0
- Sherratt R., Bostock H., and Sears T. Effects of 4-amino-pyridine on normal and demyelinated mammalian nerve fibres. Nature, 283, 570-572 (1980). doi: 10.1038/283570a0
- Bostock H., Sears T. A., and Sherratt R. M. The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres. J. Physiol., 313, 301-315 (1981) doi: 10.1113/jphysiol.1981.sp013666
- Hansebout R. R., Blight A. R., Fawcett S., and Reddy K. 4-Aminopyridine in chronic spinal cord injury: a controlled, double-blind, crossover study in eight patients. J. Neurotrauma, 10 (1), 1-18 (1993). doi: 10.1089/neu.1993.10.1
- Hayes K. C., Blight A. R., Potter P. J., Allatt R. D., Hsieh J. T., Wolfe D. L., Lam S., and Hamilton J. T. Pre-clinical trial of 4-aminopyridine in patients with chronic spinal cord injury. Paraplegia, 31 (4), 216-224 (1993). doi: 10.1038/sc.1993.40
- Hansebout R. R., Blight A. R., Fawcett S., and Reddy K. 4-Aminopyridine in chronic spinal cord injury: a controlled, double-blind, crossover study in eight patients. J. Neurotrauma, 10 (1), 1-18 (1993). doi: 10.1089/neu.1993.10.1
- Grishin S., Shakirzyanova A., Giniatullin A., Afzalov R., and Giniatullin R. Mechanisms of ATP action on motor nerve terminals at the frog neuromuscular junction. Eur. J. Neurosci., 21 (5), 1271-1279 (2005). doi: 10.1111/j.1460-9568.2005.03976.x
- Burnstock G., Knight G. E., and Greig A. V. Purinergic signaling in healthy and diseased skin. J. Invest. Dermatol., 132 (3), 526-546 (2012). doi: 10.1038/jid.2011.344
- Burnstock G. Purines and sensory nerves. Handb. Exp. Pharmacol., 194, 333-392 (2009). doi: 10.1007/978-3-540-79090-7_10
- Khairullin A. E., Grishin S. N., and Ziganshin A. U. Pre-synaptic purinergic modulation of the rat neuro-muscular transmission. Curr. Issu. Mol. Biol., 45, 8492-8501 (2023). doi: 10.3390/cimb45100535
- Bravo D. T., Kolmakova N. G., and Parsons S. M. New transport assay demonstrates vesicular acetylcholine transporter has many alternative substrates. Neurochem. Int., 47 (4), 243-247 (2005). doi: 10.1016/j.neuint.2005.05.002
- Khairullin A. E., Teplov A. Y., Grishin S. N., and Ziganshin A. U. ATP causes contraction of denervated skeletal muscles. Biochemistry (Moscow) — Suppl. Ser. A: Membr. Cell. Biol., 17 (1), 73-77 (2023). doi: 10.1134/s1990747823060065
Arquivos suplementares
