Model' tselochislennogo lineynogo programmirovaniya kak matematicheskoe obespechenie sistemy optimal'nogo planirovaniya potokovogo proizvodstva na etape operativnogo grafikovaniya

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The problem of optimal flow production planning at the operational scheduling stage is being studied, using the example of the out-of-furnace department of a converter-based steel-making production in the iron metallurgy industry. To solve this problem, a linear integer programming model is proposed, which fully describes the specifics of the investigated technological processes. A major advantage of this approach is its scalability for solving related optimization problems in the industry of plant logistics, as well as flexibility in adapting to changes and fine-tuning the system of constraints and objective function. The software implementation of the developed model forms the basis of the operational scheduling module of the optimal flow production planning system, which is used for a large-scale computational experiment on real-world data.

About the authors

A. I Kibzun

Moscow Aviation Institute (National Research University)

Email: kibzun@mail.ru
Moscow, Russia

V. A Rasskazova

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: varvara.rasskazova@mail.ru
Moscow, Russia

References

  1. Лазарев А.А., Мусатова Е.Г. Целочисленные постановки задачи формирования железнодорожных составов и расписания их движения // Управление большими системами. 2012. № 38. С. 161-169.
  2. Гайнанов Д.Н., Игнатов А.Н., Наумов А.В., Рассказова В.А. О задаче назначения "технологического окна" на участках железнодорожной сети // АиТ. 2020. № 6. С. 3-16. https://doi.org/10.31857/S0005231020060013
  3. Ху Т. Целочисленное программирование и потоки в сетях. М.: Мир, 1974.
  4. Ryan D.M., Foster B.A. An Integer Programming Approach to Scheduling. Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling / Eds. Wren A. Amsterdam: North-Holland, 1981. P. 269-280.
  5. Wagner H.M. An Integer Linear-Programming Model for Machine Scheduling // Nav. Res. Logist. Quart. 1959. V. 6. No. 2. P. 131-140.
  6. Pochet Y., Wolsey L.A. Production Planning by Mixed Integer Programming. Switzerland: Springer Series in Operations Research & Financial Engineering, 2006.
  7. Шевченко В.Н., Золотых Н.Ю. Линейное и целочисленное линейное программирование. Нижний Новгород: Изд-во Нижегород. гос. ун-та им. Н.И. Лобачевского, 2004.
  8. Схрейвер А. Теория линейного и целочисленного программирования. М.: Мир, 1991.
  9. Сигал И.Х., Иванова А.П. Введение в прикладное дискретное программирование. Модели и вычислительные алгоритмы. М.: Физматлит, 2007.
  10. Appa G.M., Pitsoulis L.S., Paul W.H. Handbook on Modeling for Discrete Optimization. Switzerland: Springer Series in Operations Research & Management Science., 2006.
  11. Wolsey L.A. Integer Programming. NJ: John Wiley & Sons, 2020.
  12. Hu T.C., Kahng A.B. Linear and Integer Programming Made Easy. Switzerland: Springer, 2016.
  13. Кабулова Е.Г. Интеллектуальное управление многостадийными системами металлургического производства // Моделирование, оптимизация и информационные технологии. 2019. Т. 7. № 1(24). С. 341-351. https://doi.org/10.26102/2310-6018/2019.24.1.022
  14. Столбов В.Ю., Гитман М.Б., Федосеев С.А. Управление процессом формирования качества продукции промышленного предприятия // Прикладная математика и вопросы управления. 2016. № 3. С. 79-98.
  15. Gainanov D.N., Berenov D.A. Algorithm for Predicting the Quality of the Product of Metallurgical Production // CEUR Workshop Proceedings. 2017. V. 1987. P. 194-200.
  16. Qiu Y., Wang L., Xu X., Fang X., Pardalos P.M. Scheduling a Realistic Hybrid Flow Shop with Stage Skipping and Adjustable Processing Time in Steel Plants // Appl. Soft Comput. 2018. V. 64. P. 536-549.
  17. Kong M., Pei J., Xu J., Liu X., Pardalos P.M. A Robust Optimization Approach for Integrated Steel Production and Batch Delivery Scheduling with Uncertain Rolling Times and Deterioration Effect // Int. J. Prod. Res. 2020. V. 58. No. 17. P. 5132-5154. https://doi.org/10.1080/00207543.2019.1693659
  18. Long J., Sun Z. et al. A Robust Dynamic Scheduling Approach Based on Release Time Series Forecasting for the Steelmaking Continuous Casting Production // Appl. Soft Comput. 2020. V. 92. P. 106271.
  19. Лазарев А.А., Гафаров А.А. Теория расписаний. Задачи и алгоритмы. М.: Наука, 2011.
  20. Brucker P., Knust S. Complex Scheduling. Germany: Springer-Verlag Berlin, 2006.
  21. Mingozzi A., Maniezzo V., Ricciardelli S., Bianco L. An Axact Alforithm for Project Scheduling with Recource Constraints Based on New Mathematical Formulation // Management Sci. 1998. V. 44. P. 714-729.
  22. Burkov V.N. Problems of Optimum Distribution of Recources // Control Cibernet. 1972. V. 1. No. 1(2). P. 27-41.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 The Russian Academy of Sciences