Genetic predictors of the pharmacological effects of dipeptidyl peptidase-4 inhibitors and sulfonylureas in patients with type 2 diabetes mellitus


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review presents current data on the pharmacogenetics of such oral antihyperglycemic drugs as dipeptidyl peptidase-4 (DPP-4) inhibitors and sulfonylureas (SU), whose mechanism of action is somehow related with the effect on the secretion of endogenous insulin. There is a significant variability in the glucose-lowering ability of DPP-4 inhibitors and SU, as well as in their side effects, pharmacokinetics (PK) and pharmacodynamics (PD). Majority of genetic studies focus on genetic polymorphisms involved in oral antihyperglycemic drugs (OADs) PK. Some recent studies, however, include genes encoding target molecules and transcription factors affecting the OAD PD. It is assumed that the therapeutic response to SU and DPP-4 inhibitors is widely associated with a number of single nucleotide polymorphisms in the TCF7L2, KCNJ11 and ABCC8 genes due to their crucial role in insulin secretion and glucose homeostasis. Significant progress has been achieved in determination of genetic markers associated with PD, therapeutic response and/or side effects of OADs. At the same time, despite the contradicting results of studies of various genetic factors that can cause a change in the glucose-lowering effect in response to taking antidiabetic drugs, the results of such reseach should undoubtedly be considered as the basis of the future pharmacogenetic recommendations for antihyperglycemic therapy in type 2 diabetes mellitus.

Full Text

Restricted Access

About the authors

Polina B. Shorokhova

North-Western State Medical University n.a. I.I. Mechnikov

Email: poliamina@gmail.com
Department of Endocrinology n.a. Acad. V.G. Baranov, Postgraduate Student St. Petersburg, Russia

V. L Baranov

North-Western State Medical University n.a. I.I. Mechnikov

Department of Endocrinology n.a. Acad. V.G. Baranov St. Petersburg, Russia

N. V Vorokhobina

North-Western State Medical University n.a. I.I. Mechnikov

Department of Endocrinology n.a. Acad. V.G. Baranov St. Petersburg, Russia

O. S Shpilevaya

North-Western State Medical University n.a. I.I. Mechnikov

Department of Endocrinology n.a. Acad. V.G. Baranov St. Petersburg, Russia

References

  1. DeFronzo R.A. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diab. 2009;58(4):773-95. doi: 10.2337/db09-9028.
  2. Schwartz S.S., Epstein S., Corkey B.E., et al. The time is right for a new classification system for diabetes: rationale and implications of the ß-cell-centric classification schema. Diab Care. 2016;39(2):179-86. doi: 10.2337/dc15-1585.
  3. Аметов А.С. Патофизиологический подход как основа выбора стратегии успешного лечения сахарного диабета 2 типа. Фарматека. 2017;5:28-35.
  4. Brunetti A, Chiefari E., Foti D. Recent advances in the molecular genetics of type 2 diabetes mellitus. World J Diab. 2014;5(2):128-40. Doi: 10.4239/ wjd.v5.i2.128.
  5. Sun X., Yu W., Hu C. Genetics of type 2 diabetes: insights into the pathogenesis and its clinical application. Biomed Res int. 2014;2014:926713. doi: 10.1155/2014/926713.
  6. Billings L.K., Florez J.C. The genetics of type 2 diabetes: what have we learned from GWAS? Ann NX. Acad Sci. 2010;1212(1):59-77. doi: 10.1111/j.1749-6632.2010.05838.x.
  7. Singh S., Usman K., Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diab. 2016;7(15):302-15. doi: 10.4239/wjd. v7.i15.302.
  8. Hattersley A.T. Prime suspect: the TCF7L2 gene and type 2 diabetes risk. J. Clin Invest. 2007;117(8):2077-79. doi: 10.1172/JCI33077.
  9. Lyssenko V., Lupi R., Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J. Clin. Invest. 2007;117(8):2155-63. Doi: 10.1172/ JCI30706.
  10. Zhou Y., Park S.Y., Su J., et al. TCF7L2 is a master regulator of insulin production and processing. Hum Mol Genet. 2014;23(24):6419-31. doi: 10.1093/hmg/ddu359.
  11. Cauchi S., Meyre D., Dina C., et al. Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diab. 2006;55(10):2903-908. Doi: 10.2337/ db06-0474.
  12. Saxena R., Gianniny L., Burtt N.P, et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diab. 2006;55(10):2890-95. Doi: 10,2337/db06-0381.
  13. Aguilar-Bryan L., Bryan J. Molecular biology of adenosine triphosphate - sensitive potassium channels. Endocr. Rev. 1999;20(2):101-35. doi: 10.1210/edrv.20.2.0361.
  14. Seino S., Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol. 2003;81(2):133-76. Doi:10.1016/ S0079-6107(02)00053-6.
  15. Schwanstecher C., Meyer U., Schwanstecher M. KIR6.2 Polymorphism Predisposes to Type 2 Diabetes by Inducing Overactivity of Pancreatic-CellATP-Sensitive K+ Channels. Diab. 2002;51(3): 875-79. doi: 10.2337/diabetes.51.3.875.
  16. Mongolian population. J Diab. 2012;4(3): 238-42. doi: 10.1111/j.1753-0407.2011.00177.
  17. Sanghera D.K., Ortega L., Han S., et al. Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC. Med Genet. 2008;9(1):59. doi: 10.1186/1471-2350-9-59.
  18. Yang L., Zhou X., Luo Y, et al. Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals. Mol Biol Rep. 2012;39(1): 645-59. doi: 10.1007/s11033- 011-0782-6.
  19. Hamming K.S.C., Soliman D., Matemisz L.C., et al. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diab. 2009;58(10):2419-24. Doi: 10.2337/ db09-0143.
  20. Florez J.C., Burtt N., de Bakker P.I.W., et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diab. 2004;53(5):1360-68. Doi: 10.2337/ diabetes.53.5.1360.
  21. Sokolova E.A., Bondar I.A., Shabelnikova O.Y, et al. Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) Association in Russian Diabetes Mellitus 2 Type Cohort and Meta-Analysis. PLoS. One. 2015;10(5):e0124662. Published 2015 May 8. doi: 10.1371/journal.pone.0124662.
  22. Inzucchi S.E., McGuire D.K. New drugs for the treatment of diabetes: part II: Incretin-based therapy and beyond. Circulat. 2008;117(4):574-84. doi: 10.1161/CIRCULATIONAHA.107.735 795.
  23. Chacra A.R., Tan G.H., Apanovitch A., et al. Saxagliptin added to a submaximal dose of sulphonylurea improves glycaemic control compared with uptitration of sulphonylurea in patients with type 2 diabetes: a randomised controlled trial. Int J Clin. Pract. 2009;63(9):1395-406. doi: 10.1111/j.1742-1241.2009.02143.
  24. Aschner P, Chan J., Owens D.R., et al. Insulin glargine versus sitagliptin in insulin-naive patients with type 2 diabetes mellitus uncontrolled on metformin (EASIE): a multicentre, randomised open-label trial. Lancet. 2012;379(9833):2262-69. doi: 10.1016/S0140-6736(12)60439-5.
  25. Aso Y., Ozeki N., Terasawa T., et al. Serum level of soluble CD26/dipeptidyl peptidase-4 (DPP-4) predicts the response to sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes controlled inadequately by metformin and/or sulfonylurea. Transl Res. 2012;159(1):25-31. Doi: 10.1016/j. trsl.2011.09.005.
  26. Xiong X., Shao W., Jin T. New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic ß-cells: the involvement of the Wnt signaling pathway effector ß-catenin. Islets. 2012;4(6):359-65. doi: 10.4161/isl.23345
  27. Zimdahl H., Ittrich C., Graefe-Mody U., et al. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetol. 2014;57(9):1869-75. doi: 10.1007/s00125-014-3276-y.
  28. da Silva Xavier G., Mondragon A., Sun G., et al. Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2-null mice. Diabetol. 2012;55(10):2667-76. doi: 10.1007/s00125- 012-2600-7.
  29. Shu L., Matveyenko A.V, Kerr-Conte J., et al. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum. Mol. Genet. 2009;18(13):2388-99. doi: 10.1093/hmg/ddp178.
  30. Loos R.J., Franks P.W., Francis R.W., et al. TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population. Diab. 2007;56(7):1943-47. Doi: 10.2337/ db07-0055.
  31. Ordelheide A.M., Gerst F., Rothfuss O., et al. Nor-1, a novel incretin-responsive regulator of insulin genes and insulin secretion. Mol Metab. 2013;2(3):243-55.
  32. Weyrich P, Staiger H., Stancakova A., et al. Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced beta-cell function in non-diabetic subjects. BMC. Med Genet. 2009;10(1):77. doi: 10.1186/1471-2350-10-77.
  33. Hart L.M., Fritsche A., Nijpels G., et al. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diab. 2013;62(9):3275-81. doi: 10.2337/db13-0227.
  34. Jamaluddin J.L., Huri H.Z., Vethakkan S.R. Clinical and genetic predictors of dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes mellitus. Pharmacogenomics. 2016;17(8):867-81. doi: 10.2217/pgs-2016-0010.
  35. McTaggart J.S., Clark R.H., Ashcroft F.M. The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. J. Physiol. 2010;588(17):3201-209. Doi: 10.1113/ jphysiol.2010.191767.
  36. Sesti G., Laratta E., Cardellini M., et al. The E23K variant of KCNJ11 encoding the pancreatic betacell adenosine 5'-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006;91(6):2334-39. Doi: 10.1210/ jc.2005-2323.
  37. Holstein A., Hahn M., Stumvoll M., et al. The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes. Horm Metab Res. 2009;41(5):387-90. doi: 10.1055/s-0029-1192019.
  38. El-Sisi A.E., Hegazy S.K., Metwally S.S., et al. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in egyptian patients with type 2 diabetes. Ther Adv. Endocrinol Metab. 2011;2(4):155-64. doi: 10.1177/2042018811415985.
  39. Shimajiri Y., Yamana A., Morita S., et al. Kir6.2 E23K polymorphism is related to secondary failure of sulfonylureas in non-obese patient with type 2 diabetes. J Diab Invest. 2013;4(5):445-49. doi: 10.1111/jdi.12070.
  40. Feng Y., Mao G., Ren X., et al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diab Care. 2008;31(10):1939-44. doi: 10.2337/dc07-2248.
  41. Javorsky M., Klimcakova L., Schroner Z., et al. KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur J Intern Med. 2012;23(3): 245-49. Doi: 10.1016/j. ejim.2011.10.018.
  42. Li Q., Chen M., Zhang R., et al. KCNJ11 E23K variant is associated with the therapeutic effect of sulphonylureas in Chinese type 2 diabetic patients. Clin Exp Pharmacol Physiol. 2014;41(10):748-54. doi: 10.1111/1440-1681.
  43. Gloyn A.L., Hashim Y., Ashcroft S.J., et al. Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53). Diab Med. 2001;18(3):206-doi: 10.1046/j.1464-5491.2001. 00449.
  44. Nikolac N., Simundic A.M., Katalinic D., et al. Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch Med Res. 2009;40(5):387-92. Doi: 10.1016/j. arcmed.2009.06.006.
  45. Ragia G., Tavridou A., Petridis I., et al. Association of KCNJ11E23K gene polymorphism with hypoglycemia in sulfonylurea-treated type 2 diabetic patients. Diab Res. Clin Pract. 2012;98(1):119-24. Doi: 10.1016/j. diabres.2012.04.017.
  46. Klen J., Dolzan V., Janez A. CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur J Clin Pharmacol. 2014;70(4):421-doi: 10.1007/s00228-014-1641.
  47. Zhang H., Liu X., Kuang H., et al. Association of sulfonylurea receptor 1genotype with therapeutic response to gliclazide in type 2 diabetes. Diab Res Clin Pract. 2007;77(1):58-61. Doi: 10.1016/j. diabres.2006.10.021.
  48. Sato R., Watanabe H., Genma R., et al. ABCC8 polymorphism (Ser1369Ala): influence on severe hypoglycemia due to sulfonylureas. Pharmacogen. 2010;11(12):1743-50. Doi: 10.2217/ pgs.10.135.
  49. Nikolac N., Simundic A.M., Saracevic A., et al. ABCC8 polymorphisms are associated with triglyceride concentration in type 2 diabetics on sulfonylurea therapy. Genet Test Mol Biomark. 2012;16(8):924-30. Doi:10.1089/ gtmb.2011.0337.
  50. Meirhaeghe A., Helbecque N., Cottel D., et al. Impact of sulfonylurea receptor 1 genetic variability on non-insulin-dependent diabetes mellitus prevalence and treatment: a population study. Am J Med Genet. 2001;101(1):4-8. Doi:10.1002/ ajmg.1297.
  51. Zychma M.J., Gumprecht J., Strojek K., et al. Sulfonylurea receptor gene 16-3 polymorphism -association with sulfonylurea or insulin treatment in type 2 diabetic subjects. Med Sci Monit. 2002;8(7):512-15.
  52. Pearson E.R., Donnelly L.A., Kimber C., et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diab. 2007;56(8):2178-82. Doi:10.2337/ db07-0440.
  53. Holstein A, Hahn M., Körner A, et al. TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC. Med Genet. 2011;12(1):30. doi: 10.1186/1471-2350-12-30.
  54. Schroner Z, Javorsky M., Tkacova R., et al. Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diab Obes Metab. 2011;13(1):89-91. doi: 10.1111/j.1463-1326.2010.01324.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies