DOI: 10.26442/1815-1434 2018.2.38-41

Рибоциклиб в 1-й линии терапии гормоночувствительного рака молочной железы

Л.Г.Жукова^{№1}, И.П.Ганьшина², О.О.Гордеева², Е.В.Лубенникова²

ГБУЗ «Московский клинический научно-практический центр им. А.С.Логинова» Департамента здравоохранения г. Москвы. 111123, Россия, Москва, ш. Энтузиастов, д. 86

²ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н.Блохина» Минздрава России. 115478,

Россия, Москва, Каширское ш., д. 23

[™]zhukova.lyudmila@rambler.ru

Рак молочной железы – наиболее распространенная опухолевая патология среди женщин во всем мире. Несмотря на достигнутые успехи в лечении этого заболевания, остается высокая потребность в новых терапевтических агентах. В этой статье представлен обзор доказательных данных, свидетельствующих о высокой активности нового ингибитора циклинзависимых киназ – рибоциклиба. Кроме того, приведены наблюдения из собственного клинического опыта, накопленного в ходе клинического исследования IIIb фазы COMPLEEMENT.

Ключевые слова: рак молочной железы, 1-я линия терапии, ингибиторы CDK4/6, рибоциклиб.

Для цитирования: Жукова Л.Г., Ганьшина И.П., Гордеева О.О., Лубенникова Е.В. Рибоциклиб в 1-й линии терапии гормоночувствительного рака молочной железы. Современная Онкология. 2018; 20 (2): 38-41. DOI: 10.26442/1815-1434_2018.2.38-41

Review

Ribociclib in 1st line HR+ breast cancer treatment

L.G.Zhukova^{⊠1}, I.P.Ganshina², O.O.Gordeeva², E.V.Lubennikova²

¹A.S.Loginov Moscow Clinical Scientific Practical Center of the Department of Health of Moscow. 111123, Russian Federation, Moscow, sh. Entuziastov, d. 86

²N.N.Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation. 115478, Russian Federation, Moscow, Kashirskoe sh., d. 23

[⊴]zhukova.lyudmila@rambler.ru

Breast cancer is a leading oncologic disease among women worldwide. Though the achieved results in treating patients with luminal subtypes are high, there is a great demand on new approaches in this field. This article highlights the new CDK4/6 inhibitor ribociclib as well as presents clinical cases from the own clinical practice obtained during phase IIIb COMPLEEMENT trial.

Key words: breast cancer, first line, CDK4/6 inhibitors, ribociclib.

For citation: Zhukova L.G., Ganshina I.P., Gordeeva O.O., Lubennikova E.V. Ribociclib in 1st line HR+ breast cancer treatment. Journal of Modern Oncology. 2018; 20 (2): 38-41. DOI: 10.26442/1815-1434_2018.2.38-41

Рак молочной железы (РМЖ) остается лидирующим злокачественным новообразованием среди женщин, внося значительный вклад как в заболеваемость, так и в смертность от онкологической патологии в России [1]. Большая часть опухолей относится к люминальным подтипам [2], что открывает возможность использования гормональной терапии. Несмотря на более оптимистичные прогнозы как общей, так и безрецидивной выживаемости по сравнению с другими подтипами РМЖ [3], потребность в новых препаратах, способных улучшить результаты лечения пациентов, остается высокой.

Актуальность поиска новых препаратов для лечения гормоночувствительного РМЖ обусловлена не только высокой распространенностью этого подтипа, но и часто обсуждаемой в последнее время проблемой гормонорезистентности. Такая резистентность может быть как первичной (изначальное отсутствие чувствительности опухоли к блокаде гормональных рецепторов), так и вторичной. Вторичная резистентность может реализовываться как за счет мутаций гормональных рецепторов (например, ESR1), так и за счет активации других сигнальных путей. В исследовании BOLERO-2 [4] комбинация ингибитора ароматазы с эверолимусом, блокирующим сигнальный путь PI3K/Akt/mTOR, привела к значимому увеличению выживаемости без прогрессирования

(ВБП). На данный момент опубликованы результаты исследования еще одного препарата, бупарлисиба, который также был направлен на блокаду этого сигнального пути (BELLE-3) [5]. Добавление бупарлисиба к фулвестранту позволило достоверно увеличить ВБП, но профиль токсичности препарата не позволил ему получить дальнейшего развития. Таким образом, на данный момент существует необходимость поиска новых мишеней, блокада которых наряду с гормонотерапией позволит улучшить результаты лечения пациентов с гормоночувствительным РМЖ.

В феврале 2015 г. Food and Drug Administration (FDA) одобрило палбоциклиб – первый препарат из нового класса ингибиторов циклинзависимых киназ в 1-й линии гормоночувствительного РМЖ в комбинации с ингибитором ароматазы. Препарат получил ускоренное одобрение на основании исследования II фазы PALOMA-1 [6]. С этого момента начался новый этап в развитии терапевтических подходов в лечении метастатического гормоночувствительного РМЖ. На данный момент FDA одобрено 3 препарата этого класса: палбоциклиб (Pfizer), рибоциклиб (Novartis) и абемациклиб (Eli Lilly), обладающие сходной эффективностью, но разными профилями токсичности. В Российской Федерации к настоящему моменту зарегистрированы первые два препарата, третий ожидает регистрации в ближайшее время.

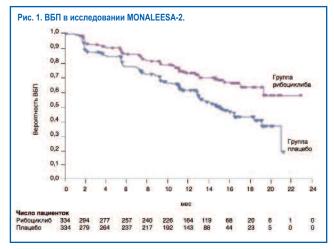
Характеристика больных, включенных в исследование MONALEESA-2				
Характеристика Медиана возраста, лет	Группа рибоциклиба (n=334) 62 (23-91)		Группа плацебо (n=334) 63 (29–88)	
	Статус ECOG			
0	205	61,4	202	60,5
1	129	38,6	132	39,5
Статус рецепторов				
P9+	332	99,4	333	99,7
ΡΠ+	271	81,1	278	83,2
Заболевание de novo	114	34,1	113	33,8
Безрецидивный период с момента окончания адъювантно	ой терапии, мес			
≤12	4	1,2	10	3,0
>12≤24	14	4,2	15	4,5
>24	202	60,5	195	58,4
Неизвестно	0	0	1	0,3
Предшествующая (нео)адъювантная химиотерапия	146	43,7	145	43,4
Предшествующая (нео)адъювантная гормонотерапия	175	52,4	171	51,2
Анастрозол	47	14,1	42	12,6
Эксеместан	19	5,7	25	7,5
Гозерелин	6	1,8	3	0,9
Летрозол	34	10,2	25	7,5
Тамоксифен	140	41,9	145	43,4
Другое	2	0,6	4	1,2
Количество зон поражения		1		
0	2	0,6	1	0,3
1	100	29,9	117	35,0
2	118	35,3	103	30,8
≥3	114	34,1	113	33,8
Локализация метастазов			1	
Молочная железа	8	2,4	11	3,3
Кости	246	73,7	244	73,1
Только костные метастазы	69	20,7	78	23,4
Висцеральное поражение	197	59,0	196	58,7
Лимфатические узлы	133	39,8	123	36,8
Другое	35	10,5	22	6,6

Механизм действия ингибиторов циклинзависимых киназ

Клеточный цикл - это сложный механизм, обеспечивающий непрерывность жизнедеятельности клетки. Основная контрольная точка клеточного цикла – это фаза G1, когда опухолевая клетка может как продолжить находиться в фазе покоя – G0, так и начать подготовку к митозу, перейдя к фазе S. Неспособность воспринимать сигналы, подавляющие пролиферативную активность, - одна из основных характеристик опухолевой клетки [7, 8], что обусловливает беспрепятственный переход от фазы G1 к фазе S клеточного цикла и, таким образом, приводит к делению опухолевых клеток.

Переход от фазы G1 к фазе S обеспечивается каскадом ферментных реакций, ведущую роль в котором играет фосфорилирование белка-супрессора Rb (белок ретинобластомы). Эта реакция обеспечивается семейством циклинзависимых киназ 4 или 6 (СDК4/6). Ингибирование этих ферментов приводит к остановке реакции фосфорилирования Rb и в результате – к блокировке перехода от фазы G1 к фазе S. Кроме того, недавние данные свидетельствуют и о неоангиогенной активности CDK6, что также может вносить вклад в рост опухолевой ткани [9]. Таким образом, блокировка семейства ферментов СDК4/6 ведет к остановке роста

опухолевой ткани, блокируя бесконтрольную пролиферацию опухолевых клеток.


Активность нового класса препаратов именно для люминальных подтипов РМЖ была продемонстрирована in vitro [10] и обусловлена, вероятнее всего, влиянием активированных рецепторов эстрогенов (РЭ) на рост экспрессии циклина D1, являющегося регулятором семейства циклинзависимых киназ.

Исследование MONALEESA-2

Эффективность и безопасность рибоциклиба в 1-й линии терапии гормоночувствительного РМЖ в комбинации с ингибиторами ароматазы были продемонстрированы в многоцентровом двойном слепом плацебо-контролируемом исследовании III фазы – MONALEESA-2 [11], результаты которого впервые представлены на ежегодном конгрессе European Society for Medical Oncology в 2016 г. в Копенгагене.

Критерии включения предусматривали участие больных, достигших менопаузы, с метастатическим или местно-рецидивирующим люминальным Her2/neu-отрицательным РМЖ, которые не получали лечения по поводу распространенного заболевания. Пациенты должны были иметь статус 0-1 по шкале Eastern Cooperative Oncology Group (ECOG), а также измеряемые проявления болезни или хотя бы один

КЛИНИЧЕСКАЯ ОНКОЛОГИЯ / CLINICAL ONCOLOGY

литический очаг в костях. В исследование допускалось включение пациентов, которые ранее получали нестероидные ингибиторы ароматазы в адъювантном режиме при условии, если безрецидивный период составил более 12 мес. Пациенты с метастазами в центральной нервной системе, интервалом QT > 450 мс на скрининге и неадекватным функционированием желудочно-кишечного тракта, которое могло бы повлиять на абсорбцию препарата, в исследование не включались. Некоторые характеристики пациентов представлены в сводной таблице.

Пациенты получали комбинацию летрозола 2,5 мг/сут внутрь ежедневно с рибоциклибом (600 мг/сут внутрь, дни 1–21 каждые 4 нед) или с плацебо в том же режиме. Пациенты были рандомизированы в соотношении 1:1 и стратифицированы в зависимости от наличия метастазов в легких или печени. Лечение прекращалось при прогрессировании или непереносимой токсичности и в случае смерти. По условиям исследования в случае токсичности допускалась поэтапная редукция дозы до 400 мг, а затем до 200 мг.

Первичной контрольной точкой исследования была ВБП, основной вторичной точкой являлась общая выживаемость. Другие вторичные контрольные точки исследования включали в себя общий объективный ответ, уровень общей клинической эффективности (объективный ответ + стабилизация, продолжающаяся более 24 нед), безопасность, а также качество жизни.

Набранная в исследование группа включала в себя 668 пациентов, которые были рандомизированы 1:1. Характеристики обеих групп были сбалансированы между собой. Медиана возраста составила 62 года, около 1/3 пациентов в каждой из групп имели установленный de novo диагноз РМЖ. У 22% пациентов проявления заболевания были ограничены костями, а 58,8% — имели висцеральное поражение.

На момент проведения первичного анализа (январь 2016 г.) лечение получали 195 пациентов в группе рибоциклиба и 154 – в группе плацебо. Лечение было прекращено в связи с прогрессированием заболевания в 26,0% случаев в исследуемой группе и в 43,7% – в группе сравнения. У 7,5% пациентов в 1-й группе причиной остановки лечения стали нежелательные явления, тогда как в группе плацебо по той же причине прекратили лечение 2,1% пациентов. Редукция дозы потребовалась 53,9% пациентов, получающих рибоциклиб, и 7,0% – получающих плацебо. Наиболее частой причиной снижения дозы препарата была нейтропения.

Исследование достигло своей первичной точки, и на момент первого анализа ВБП не была достигнута в исследуемой группе, а в группе сравнения составила 14,7 мес. Спустя 12 мес после начала лечения ВБП составила 72,8% в группе рибоциклиба и 60,9% – в группе плацебо, а через 18 мес – 63,0 и 42,2% соответственно. Выигрыш по ВБП наблюдался во всех группах, по которым проводилась стратификация. Обновленные данные, представленные на АSCO 2017 [12], показали результаты по ВБП через 24 мес: 54,7% против 35,9%. Итоговая медиана ВБП составила 25,3 мес в исследуемой группе и 16,0 мес – в группе плацебо (рис. 1). На данный момент имеется недостаточно информации для анали-

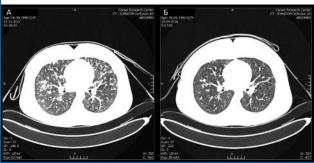
за общей выживаемости, однако исследователи планируют представить эти результаты в течение ближайших 2–3 лет.

Общий ответ на терапию был выше в группе исследуемого препарата – 40,7% против 27,5%, так же как и общая клиническая эффективность – 79,6% против 72,8% (оба различия достоверны).

Наиболее характерными нежелательными явлениями при использовании рибоциклиба оказались нейтропения (74,3% против 5,2%, 3-4-й степени – 59,3% против 0,9%), тошнота (51,5% против 28,5%), слабость (36,5% против 30,0%) и диарея (35,5% против 22,1%). Из побочных эффектов 3-4-й степени обращали на себя внимание гипертензия (9,9% против 10,9%), повышение аланинаминотрансферазы (9,3% против 1,2%) и аспартатаминотрансферазы (5,7% против 1,2%). Фебрильная нейтропения была диагностирована у 5 (1,5%) пациентов в исследуемой группе и не наблюдалась в группе плацебо. В обеих группах сообщалось о наличии инфекционных процессов, которые были представлены в основном мочевой инфекцией или инфекцией верхних дыхательных путей. В основном все случаи относились к 1 или 2-й степени тяжести в обеих группах, однако было зарегистрировано 2 (0,6%) случая 3-й степени в группе рибоциклиба. Интервал QTcF увеличивался более чем на 60 мс у 9 (2,7%) пациентов в исследуемой группе, чего не наблюдалось в группе сравнения.

Серьезные нежелательные явления были отмечены у 21,3 и 11,8% пациентов в 1 и 2-й группе соответственно. В процессе лечения было зарегистрировано 4 случая смерти: 3 — в группе рибоциклиба и 1 — в группе плацебо. Двое пациентов (по одному в каждой группе) погибли в результате прогрессирования основного заболевания, 1 пациент погиб по причинам, не связанным с исследуемым препаратом. Четвертый пациент погиб вследствие развившейся гипокалиемии 3-й степени и пролонгации интервала QT 2-й степени, что было обусловлено, по мнению исследователя, сопутствующим самостоятельным приемом пациентом метадона, который был запрещен к употреблению совместно с исследуемым лечением.

Таким образом, рибоциклиб продемонстрировал эффективность и безопасность при использовании в 1-й линии терапии гормоночувствительного РМЖ в комбинации с ингибиторами ароматазы. В марте 2017 г. препарат получил регистрацию от FDA, а в январе 2018 г. – в РФ (ЛП-004670). В настоящий момент продолжаются исследования, целью которых является расширение таргетной популяции для применения нового ингибитора CDK4/6.


Так, в Сан-Антонио, США, в декабре 2017 г. были представлены результаты исследования MONALEESA-7 [13], которое изучало эффективность рибоциклиба среди пременопаузальных пациенток в комбинации с гормонотерапией по сравнению с применением только гормонотерапии. Исследование достигло первичной контрольной точки, показав увеличение ВБП в исследуемой группе пациенток (23,8 мес против 13 мес). Частичный ответ был зарегистрирован у 51% в группе исследуемой терапии против 36% – в группе плацебо. Данные по общей выживаемости пока недоступны.

Таким образом, можно сделать вывод, что эффективность рибоциклиба не ограничена какой-либо из групп пациентов: во всех поданализах исследования MONALESA-2, а также среди пременопаузальных пациенток, отдельно представленных в исследовании MONALESA-7, рибоциклиб продемонстрировал эффективность, безопасность и широкие перспективы использования.

Кроме того, ожидаются данные исследования MONALESA-3 [14], в котором принимают участие не только пациентки с вновь возникшим метастатическим процессом, но и те, кто успел получить не более одной линии лечения по поводу распространенного заболевания. В исследовании предусмотрено изучение использования комбинации рибоциклиба с фулвестрантом в сравнении с применением только фулвестранта.

На данный момент также продолжается открытое исследование IIIb фазы COMPLEEMENT-1 [15], которое ставит своей целью собрать дополнительные данные об эффективности и безопасности рибоциклиба в комбинации с летрозолом в 1-й линии терапии у пациентов с метастатическим

Рис. 2. Компьютерная томография грудной клетки до начала лечения (a), после 6-го цикла терапии (б).

люминальным РМЖ. В исследование планируется включить более 3 тыс. пациентов. Далее мы представляем клинический случай из собственного опыта использования рибоциклиба в рамках исследования COMPLEEMENT-1.

Клинический случай

Пациентка К., 27 лет, впервые обнаружила узловое образование в правой молочной железе в июле 2017 г. на фоне лактации (роды были в феврале 2017 г.). При обследовании в октябре 2017 г. по месту жительства был установлен и верифицирован рак правой молочной железы T4N1M1, метастазы в костях, легких. При осмотре: молочные железы несимметричны, правая чуть больше левой. Ареолы и соски не изменены. Из правого соска отмечаются белесые выделения. В правой молочной железе в верхненаружном квадранте пальпируется плотное опухолевое образование размером 5,0×5,5 см. Кожа над новообразованием не гиперемирована, слегка отечна. В ткани левой молочной железы – без узловых образований. В правой аксиллярной области пальпируются плотные подвижные умеренно болезненные лимфоузлы до 1,5 см в диаметре. Другие лимфоузлы, доступные пальпации, не увеличены.

При пересмотре гистологических препаратов в НМИЦ онкологии им. Н.Н.Блохина установлен инфильтративый рак неспецифического типа 2-й степени злокачественности. Иммуногистохимия: РЭ – 8б, рецепторы прогестерона (РП) – 36, Her2/neu – 1+, Ki-67-50%. Руководствуясь современными рекомендациями по лечению горомоночувствительного РМЖ без «висцерального криза» у больных с сохраненным менструальным циклом, на I этапе в октябре 2017 г. была выполнена лапароскопическая тубовариэктомия. Тогда же начато введение бисфософонатов. По данным компьютерной томографии органов грудной клетки, брюшной полости, малого таза обнаружены следующие проявления заболевания: узел в правой молочной железе, метастазы в подмышечных лимфатических узлах, метастазы в костях (Th11-12, L2-3, L5), множественные метастазы в легких (рис. 2, a).

В ноябре 2017 г. пациентка начала лечение в рамках клинического исследования COMPLEEMENT-1. К маю 2018 г. пациентка получает 7-й курс в запланированном режиме. Из токсичности: начиная с 1-го цикла терапии на 3-й неделе приема рибоциклиба отмечено развитие нейтропении 2-й степени без инфекционных осложнений. Начиная со 2-го курса отмечается периодически возникающая зудящая сыпь 1-2-й степени. В плановом порядке на фоне лечения пациентке была проведена вертебропластика Th11. По данным контрольного обследования уже после 3-го курса лечения отмечена выраженная положительная динамика со стороны метастазов в легких, также отмечалось снижение плотности пальпируемого образования в молочной железе, уменьшение его размеров. При контрольном обследовании после 6-го курса отмечены дальнейшее уменьшение числа и размеров метастазов в легких (рис. $2, \delta$), частичная репарация в имеющихся литических костных метастазах. Следует отметить, что выбранный вариант терапии позволяет пациентке сохранять свою полную социальную активность и не мешает выполнять ее основное предназначение – быть красивой любящей мамой и растить ребенка.

Литература/References

- 1. Злокачественные новообразования в России в 2016 году (заболеваемость и смертность). Под ред. АД. Каприна, В.В.Старинского, Г.В.Петровой. М.: МНИОИ им. ПАГерцена филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018. / Zlokachestvennye novoobrazovaniia v Rossii v 2016 godu (zabolevaemost' i smertnost'). Pod red. A.D. Kaprina, V.V.Starinskogo, G.V.Petrovoi. M.: MNIOI im. P.A.Gertsena filial FGBU "NMITs radiologii" Minzdrava Rossii, 2018. [in Russian]
- Anderson WF et al. Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Res Treat 2002; 76: 27–36.
- Ignatov A et al. Patterns of breast cancer relapse in accordance to biological subtype. J Cancer Res Clin Oncol 2018 Apr 19.
- Beaver JA et al. The BOLERO-2 trial: The addition of everolimus to exemestane in the treatment of postmenopausal bormone receptor-positive advanced breast cancer. Future Oncol 2012; 8: 651-7.
- Di Leo A et al. Buparlisib plus fulvestrant in postmenopausal women with bormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2018; 19 (1): 87–100.
- Finn R et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced bre-

- ast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 2015; 16 (1): 25–35.
- 7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.
- 8. Hanaban D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144: 646–74.
- 9. Kollmann K et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 2013; 24: 167–81.
- 10. Casimiro MC et al. Cyclin D1 determines estrogen signaling in the mammary gland in vivo. Mol Endocrinol 2013; 27: 1415–28.
- 11. Hortobagyi G et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N Engl J Med 2016; 375: 1738–48.
- 12. Hortobagyi G et al. Updated results from MONALEESA-2, a phase 3 trial of first-line ribociclib + letrozole in bormone receptor-positive (HR+), HER2-negative (HER2-), advanced breast cancer (ABC). J Clin Oncol 2017; 35 (15 Suppl.): 1038.
- Tripathy D et al. 2017 San Antonio Breast Cancer Symposium. December 5–9, 2017. Abstract GS2-05.
- 14. Fasching P et al. Phase III study of ribociclib (LEE011) plus fulvestrant for the treatment of postmenopausal patients with bormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (aBC) who have received no or only one line of prior endocrine treatment (ET): MONALEESA-3. J Clin Oncol 2016; 34 (15 Suppl.).
- 15. https://clinicaltrials.gov/ct2/show/NCT02941926

Сведения об авторах

Жукова Людмила Григорьевна — д-р мед. наук, зам. директора по онкологии, ГБУЗ «МКНЦ им. А.С.Логинова». E-mail: zhukova.lyudmila@rambler.ru

Ганьшина Инна Петровна — канд. мед. наук, вед. науч. сотр. отд-ния химиотерапии и комбинированного лечения злокачественных опухолей ФГБУ «НМИЦ онкологии им. Н.Н. Бромира»

Гордеева Ольга Олеговна – клинический аспирант отд-ния химиотерапии и комбинированного лечения злокачественных опухолей ФГБУ «НМИЦ онкологии им. Н.Н.Блохина» Лубенникова Елена Владимировна – врач-онколог отд-ния химиотерапии и комбинированного лечения злокачественных опухолей ФГБУ «НМИЦ онкологии им. Н.Н.Блохина»