Investigation of Parkinsonism Development Mechanisms and Novel Approaches to Multisystem Neurorehabilitation
- Authors: Sysoev Y.I.1, Kalinina D.S.2,3, Makhortykh A.E.3, Musienko P.E.2,3,4
-
Affiliations:
- Pavlov Institute of Physiology
- Institute of Translational Biomedicine, St. Petersburg State University
- Neurobiology Program, Scientific Center for Genetics and Life Sciences, Scientific and Technological University “Sirius”
- Federal center of brain research and neurotechnologies
- Issue: Vol 111, No 8 (2025)
- Pages: 1247-1267
- Section: REVIEW
- URL: https://modernonco.orscience.ru/0869-8139/article/view/691441
- DOI: https://doi.org/10.7868/S2658655X25080021
- EDN: https://elibrary.ru/nacmbc
- ID: 691441
Cite item
Abstract
Keywords
About the authors
Y. I. Sysoev
Pavlov Institute of Physiology
Email: susoyev92@mail.ru
St. Petersburg, Russia
D. S. Kalinina
Institute of Translational Biomedicine, St. Petersburg State University; Neurobiology Program, Scientific Center for Genetics and Life Sciences, Scientific and Technological University “Sirius”St. Petersburg, Russia; Federal Territory Sirius, Russia
A. E. Makhortykh
Neurobiology Program, Scientific Center for Genetics and Life Sciences, Scientific and Technological University “Sirius”Federal Territory Sirius, Russia
P. E. Musienko
Institute of Translational Biomedicine, St. Petersburg State University; Neurobiology Program, Scientific Center for Genetics and Life Sciences, Scientific and Technological University “Sirius”; Federal center of brain research and neurotechnologies
Email: pol-spb@mail.ru
St. Petersburg, Russia; Federal Territory Sirius, Russia; Moscow, Russia
References
- Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019) Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol 39(1): 31–59. https://doi.org/10.1007/s10571-018-0632-3
- Eiden LE, Weihe E (2011) VMAT2: А dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 1216: 86–98. https://doi.org/10.1111/j.1749-6632.2010.05906.x
- Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1): 182–217. https://doi.org/10.1124/pr.110.002642
- Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors – IUPHAR Review 13. Br J Pharmacol 172(1): 1–23. https://doi.org/10.1111/bph.12906
- Gerfen CR (2022) Segregation of D1 and D2 dopamine receptors in the striatal direct and indirect pathways: An historical perspective. Front Synaptic Neurosci 14: 1002960. https://doi.org/10.3389/fnsyn.2022.1002960
- Fuentes R, Petersson P, Nicolelis MA (2010) Restoration of locomotive function in Parkinson's disease by spinal cord stimulation: Mechanistic approach. Eur J Neurosci 32(7): 1100-8.95. https://doi.org/10.1111/j.1460-9568.2010.07417.x
- Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34: 441–466. https://doi.org/10.1146/annurev-neuro-061010-113641
- De Oliveira-Souza R (2012) The human extrapyramidal system. Med Hypotheses 79(6): 843–852. https://doi.org/10.1016/j.mehy.2012.09.004
- Musienko P, van den Brand R, Märzendorfer O, Roy RR, Gerasimenko Y, Edgerton VR, Courtine G (2011) Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuitries. J Neurosci 31(25): 9264–9278. https://doi.org/10.1523/JNEUROSCI.5796-10.2011
- Dorman D (2015) Extrapyramidal system neurotoxicity: Animal models. Handb Clin Neurol 131: 207–223. https://doi.org/10.1016/b978-0-444-62627-1.00012-3
- Blakely RD, Bauman AL (2000) Biogenic amine transporters: Regulation in flux. Current opinion in neurobiology 10(3): 328–336. https://doi.org/10.1016/S0959-4388(00)00088-X
- Gainetdinov RR, Caron MG (2003) Monoamine transporters: From genes to behavior. Annu Rev Pharmacol Toxicol 43: 261–284. https://doi.org/10.1146/annurev.pharmtox.43.050802.112309
- Gerstbrein K, Sitte HH (2006) Currents in neurotransmitter transporters. Handb Exp Pharmacol (175): 95–111. https://doi.org/10.1007/3-540-29784-7_5
- Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63(3): 585–640. https://doi.org/10.1124/pr.108.000869
- Reith ME, Zhen J, Chen N (2006) The importance of company: Na+ and Cl- influence substrate interaction with SLC6 transporters and other proteins. Handb Exp Pharmacol (175): 75–93. https://doi.org/10.1007/3-540-29784-7_4
- Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: Structure, regulation and function. Nat Rev Neurosci 4(1): 13–25. https://doi.org/10.1038/nrn1008
- Sotnikova TD, Caron MG, Gainetdinov RR (2006) DDD mice, a novel acute mouse model of Parkinson's disease. Neurology 67(7 Suppl 2): S12–7. https://doi.org/10.1212/wnl.67.7_suppl_2.s12
- Fayyad J, Sampson NA, Hwang I, Adamowski T, Aguilar-Gaxiola S, Al-Hamzawi A, Andrade LH, Borges G, de Girolamo G, Florescu S, Gureje O, Haro JM, Hu C, Karam EG, Lee S, Navarro-Mateu F, O'Neill S, Pennell BE, Piazza M, Posada-Villa J, Ten Have M, Torres Y, Xavier M, Zaslavsky AM, Kessler RC (2017) The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys. Atten Defic Hyperact Disord 9(1): 47–65. https://doi.org/10.1007/s12402-016-0208-3
- Cook EH, Jr., Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56(4): 993–998.
- Sotnikova TD, Zorina OI, Ghisi V, Caron MG, Gainetdinov RR (2008) Trace amine associated receptor 1 and movement control. Parkinsonism Relat Disord 14 Suppl 2: S99–S102. https://doi.org/10.1016/j.parkreldis.2008.04.006
- Leo D, Sukhanov I, Gainetdinov RR (2018) Novel translational rat models of dopamine transporter deficiency. Neural Regen Res 13(12): 2091–2093. https://doi.org/10.4103/1673-5374.241453
- Kalinina DS, Lyakhovetskii VA, Gorskii OV, Shkorbatova PY, Pavlova NV, Bazhenova EY, Sysoev YI, Gainetdinov RR, Musienko PE (2023) Alteration of Postural Reactions in Rats with Different Levels of Dopamine Depletion. Biomedicines 11(7): 1958. https://doi.org/10.3390/biomedicines11071958
- Ставровская АВ, Ямщикова НГ, Ольшанский АС, Гущина АС (2018) Опыт моделирования болезни Паркинсона: анализ поведенческих нарушений. Нервн болез (2): 44–50. [Stavrovskaya АV, Yamshchikova NG, Olshansky АS, Gushchina АS (2018) Modeling Parkinson’s Disease: Analysis of Behavioral Disturbances. Nervn bolez (2): 44–50. (In Russ)]. https://doi.org/10.24411/2071-5315-2018-12022
- Duty S, Jenner P (2011) Animal models of Parkinson's disease: A source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164(4): 1357–1391. https://doi.org/10.1111/j.1476-5381.2011.01426.x
- Gamber KM (2016) Animal Models of Parkinson's Disease: New Models Provide Greater Translational and Predictive Value. BioTechniques 61(4): 210–211. https://doi.org/10.2144/000114463
- Dauer W, Przedborski S (2003) Parkinson's disease: Mechanisms and models. Neuron 39(6): 889–909. https://doi.org/10.1016/s0896-6273(03)00568-3
- Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson's disease. Behav Brain Res 125(1-2): 109–125. https://doi.org/10.1016/s0166-4328(01)00309-6
- Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson's disease. Past, present, and future. Prog Brain Res 184: 133–157. https://doi.org/10.1016/s0079-6123(10)84007-5
- Jackson-Lewis V, Blesa J, Przedborski S (2012) Animal models of Parkinson's disease. Parkinsonism Relat Disord 18 Suppl 1: S183–S185. https://doi.org/10.1016/s1353-8020(11)70057-8
- Shih LC, Tarsy D (2010) Dopamine Depletors and Movement Disorders. In: Kompoliti K, Metman LV (eds) Encyclopedia of Movement Disorders. Oxford. Academ Press. 321–323.
- Widerlöv E (1979) Dose-dependent pharmacokinetics of alpha-methyl-p-tyrosine (alpha-MT) and comparison of catecholamine turnover rates after two doses of alpha-MT. J Neural Transm 44(3): 145–158. https://doi.org/10.1007/bf01253059
- Sotnikova TD, Beaulieu JM, Barak LS, Wetsel WC, Caron MG, Gainetdinov RR (2005) Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease. PLoS Biol 3(8): e271. https://doi.org/10.1371/journal.pbio.0030271
- Яхно НН, Штульман ДР (2001) Болезни нервной системы. М. Медицина. [Yakhno NN, Stulman DR (2001) Diseases of the nervous system. М. Meditsina. (In Russ)].
- Гусев ЕИ, Коновалов АН, Бурд ГС (2004) Неврология и нейрохирургия. М. Медицина. [Gusev EI, Konovalov AN, Burd GS (2004) Neurology and neurosurgery. М. Meditsina. (In Russ)].
- Aminoff MJ, Greenberg DA, Simon RP (2005) Clinical Neurology 6th ed. Lange. McGraw-Hill Medical.
- De Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5(6): 525–535. https://doi.org/10.1016/s1474-4422(06)70471-9
- Угрюмов МВ (2010) Болезни движений: медицинские и социальные аспекты / Болезнь Паркинсона: новые представления о патогенезе, диагностике и лечении. М. АПКиППРО. [Ugryumov MV (2010) Movement disorders: Medical and social aspects. In: Parkinson's disease: New ideas about pathogenesis, diagnostics and treatment. М. APKiPPRO. (In Russ)].
- Иллариошкин СН, Левин ОС (2017) Болезнь Паркинсона и расстройства движений. М. ООО Диалог. [Illarioshkin SN, Levine OS (2017) Parkinson's disease and movement disorders. М. OOO Dialog. (In Russ)].
- Armstrong MJ, Okun MS (2020) Diagnosis and Treatment of Parkinson Disease: A Review. Jama 323(6): 548–560. https://doi.org/10.1001/jama.2019.22360
- Vijayakumar D, Jankovic J (2016) Drug-Induced Dyskinesia, Part 2: Treatment of Tardive Dyskinesia. Drugs 76(7): 779–787. https://doi.org/10.1007/s40265-016-0568-1
- Lertxundi U, Isla A, Solinis MA, Domingo-Echaburu S, Hernandez R, Peral-Aguirregoitia J, Medrano J (2015) Anticholinergic burden in Parkinson's disease inpatients. Eur J Clin Pharmacol 71(10): 1271–1277. https://doi.org/10.1007/s00228-015-1919-7
- Mak MK, Wong-Yu IS, Shen X, Chung CL (2017) Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol 13(11): 689–703. https://doi.org/10.1038/nrneurol.2017.128
- Chung CL, Thilarajah S, Tan D (2016) Effectiveness of resistance training on muscle strength and physical function in people with Parkinson's disease: A systematic review and meta-analysis. Clin Rehabil 30(1): 11–23. https://doi.org/10.1177/0269215515570381
- Mehrholz J, Kugler J, Storch A, Pohl M, Hirsch K, Elsner B (2016) Treadmill training for patients with Parkinson Disease. An abridged version of a Cochrane Review. Eur J Phys Rehabil Med 52(5): 704–713.
- Lötzke D, Ostermann T, Büssing A (2015) Argentine tango in Parkinson disease – a systematic review and meta-analysis. BMC Neurol 15: 226. https://doi.org/10.1186/s12883-015-0484-0
- Zhang S, Liu D, Ye D, Li H, Chen F (2017) Can music-based movement therapy improve motor dysfunction in patients with Parkinson's disease? Systematic review and meta-analysis. Neurol Sci 38(9): 1629–1636. https://doi.org/10.1007/s10072-017-3020-8
- Tomlinson CL, Patel S, Meek C, Herd CP, Clarke CE, Stowe R, Shah L, Sackley CM, Deane KH, Wheatley K, Ives N (2013) Physiotherapy versus placebo or no intervention in Parkinson's disease. Cochrane Database Syst Rev 2013(9): Cd002817. https://doi.org/10.1002/14651858.CD002817.pub4
- Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, Coelho M, Sampaio C (2018) International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson's disease. Mov Disord 33(8): 1248–1266. https://doi.org/10.1002/mds.27372
- Мусиенко ПЕ, Горский ОВ, Килимник ВА, Козловская ИБ, Куртин Г, Эджертон ВР, Герасименко ЮП (2013) Регуляция позы и локомоции у децеребрированных и спинализированных животных. Рос физиол журн им ИМ Сеченова 99(3): 392–405. [Musienko PE, Gorskiĭ OV, Kilimnik VA, Kozlovskaia IB, Courtine G, Edgerton VR, Gerasimenko Iu P (2013) Neuronal control of posture and locomotion in decerebrated and spinalized animals. Russ J Physiol 99(3): 392–405. (In Russ)].
- Шапкова ЕЮ (2013) Электростимуляция спинного мозга для восстановления локомоторных возможностей при вертеброгенных миелопатиях. Физиотерапия бальнеология и реабилитация (3): 43–44. [Shapkova EY (2013) Electrical stimulation of the spinal cord to restore locomotor capabilities in vertebrogenic myelopathies. Fizioterapiya, balneologiya i reabilitatsiya (3): 43–44. (In Russ)].
- Никитюк ИЕ, Мошонкина ТР, Герасименко ЮП, Виссарионов СВ, Баиндурашвили АГ (2016) Регуляция баланса у детей с тяжелыми формами детского церебрального паралича после локомоторных тренировок в комбинации с электростимуляцией мышц и спинного мозга. Вопр курортол физиотерап и лечеб физ культ 93(5): 23–27. [Nikityuk IE, Moshonkina TR, Gerasimenko YP, Vissarionov SV, Baindurashvili AG (2016) The regulation of balance in the children presenting with severe cerebral palsy following the treatment with the use of the locomotor training in combination with the electrical stimulation of leg muscles and spinal cord. Vopr Kurortol Fizioter Lech Fiz Kult 93(5): 23–27. (In Russ)]. https://doi.org/10.17116/kurort2016523-27
- Capogrosso M, Wenger N, Raspopovic S, Musienko P, Beauparlant J, Bassi Luciani L, Courtine G, Micera S (2013) A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci 33(49): 19326–19340. https://doi.org/10.1523/jneurosci.1688-13.2013
- Musienko PE, Zelenin PV, Lyalka VF, Gerasimenko YP, Orlovsky GN, Deliagina TG (2012) Spinal and supraspinal control of the direction of stepping during locomotion. J Neurosci 32(48): 17442–17453. https://doi.org/10.1523/jneurosci.3757-12.2012
- Мусиенко ПЕ, Павлова НВ, Селионов ВА, Герасименко ЮП (2009) Локомоция, вызванная эпидуральной стимуляцией у децеребрированной кошки, после повреждения спинного мозга. Биофизика 54: 293–300 [Musienko PE, Pavlova NV, Selionov VA, Gersimenko IP (2009) Locomotion induced by epidural stimulation in a decerebrated cat following spinal cord injury. Biofizika 54: 293–300. (In Russ)].
- Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MA (2009) Spinal cord stimulation restores locomotion in animal models of Parkinson's disease. Science 323(5921): 1578–1582. https://doi.org/10.1126/science.1164901
- Santana MB, Halje P, Simplício H, Richter U, Freire MAM, Petersson P, Fuentes R, Nicolelis MAL (2014) Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron 84(4): 716–722. https://doi.org/10.1016/j.neuron.2014.08.061
- Yadav AP, Nicolelis MAL (2017) Electrical stimulation of the dorsal columns of the spinal cord for Parkinson's disease. Mov Disord 32(6): 820–832. https://doi.org/10.1002/mds.27033
- Capogrosso M, Gandar J, Greiner N, Moraud EM, Wenger N, Shkorbatova P, Musienko P, Minev I, Lacour S, Courtine G (2018) Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord. J Neural Eng 15(2): 026024. https://doi.org/10.1088/1741-2552/aaa87a
- Gerasimenko YP, Lavrov IA, Bogacheva IN, Shcherbakova NA, Kucher VI, Musienko PE. (2005) Formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord. Neurosci Behav Physiol 35(3): 291–298.
- Shkorbatova P, Lyakhovetskii V, Pavlova N, Popov A, Bazhenova E, Kalinina D, Gorskii O, Musienko P (2020) Mapping of the Spinal Sensorimotor Network by Transvertebral and Transcutaneous Spinal Cord Stimulation. Front Syst Neurosci 14: 555593. https://doi.org/10.3389/fnsys.2020.555593
- Agari T, Date I (2012) Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson's disease. Neurol Med Chir (Tokyo) 52(7): 470–474. https://doi.org/10.2176/nmc.52.470
- Pinto de Souza C, Hamani C, Oliveira Souza C, Lopez Contreras WO, Dos Santos Ghilardi MG, Cury RG, Reis Barbosa E, Jacobsen Teixeira M, Talamoni Fonoff E (2017) Spinal cord stimulation improves gait in patients with Parkinson's disease previously treated with deep brain stimulation. Mov Disord 32(2): 278–282. https://doi.org/10.1002/mds.26850
- de Lima-Pardini AC, Coelho DB, Souza CP, Souza CO, Ghilardi M, Garcia T, Voos M, Milosevic M, Hamani C, Teixeira LA, Fonoff ET (2018) Effects of spinal cord stimulation on postural control in Parkinson's disease patients with freezing of gait. Elife 7: e37727. https://doi.org/10.7554/eLife.37727
- Reis Menezes J, Bernhart Carra R, Aline Nunes G, da Silva Simões J, Jacobsen Teixeira M, Paiva Duarte K, Ciampi de Andrade D, Barbosa ER, Antônio Marcolin M, Cury RG (2020) Transcutaneous magnetic spinal cord stimulation for freezing of gait in Parkinson's disease. J Clin Neurosci 81: 306–309. https://doi.org/10.1016/j.jocn.2020.10.001
- Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud EM, Gandar J, Capogrosso M, Milekovic T, Asboth L, Torres RF, Vachicouras N, Liu Q, Pavlova N, Duis S, Larmagnac A, Vörös J, Micera S, Suo Z, Courtine G, Lacour SP (2015) Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218): 159–163. https://doi.org/10.1126/science.1260318
- Musienko P, van den Brand R, Maerzendorfer O, Larmagnac A, Courtine G. (2009) Combinatory electrical and pharmacological neuroprosthetic interfaces to regain motor function after spinal cord injury. IEEE Trans Biomed Eng 56(11 Pt 2): 2707–2711. https://doi.org/10.1109/TBME.2009.2027226
- Afanasenkau D, Kalinina D, Lyakhovetskii V, Tondera C, Gorsky O, Moosavi S, Pavlova N, Merkulyeva N, Kalueff AV, Minev IR, Musienko P (2020) Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat Biomed Eng 4(10): 1010–1022. https://doi.org/10.1038/s41551-020-00615-7
- Wenger N, Moraud EM, Gandar J, Musienko P, Capogrosso M, Baud L, Le Goff CG, Barraud Q, Pavlova N, Dominici N, Minev IR, Asboth L, Hirsch A, Duis S, Kreider J, Mortera A, Haverbeck O, Kraus S, Schmitz F, DiGiovanna J, van den Brand R, Bloch J, Detemple P, Lacour SP, Bézard E, Micera S, Courtine G (2016) Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med 22(2): 138–145. https://doi.org/10.1038/nm.4025
- Capogrosso M, Wagner FB, Gandar J, Moraud EM, Wenger N, Milekovic T, Shkorbatova P, Pavlova N, Musienko P, Bezard E, Bloch J, Courtine G (2018) Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nat Protoc 13(9): 2031–2061. https://doi.org/10.1038/s41596-018-0030-9
- Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98(16): 8966–8971. https://doi.org/10.1073/pnas.151105198
- Gainetdinov RR, Hoener MC, Berry MD (2018) Trace Amines and Their Receptors. Pharmacol Rev 70(3): 549–620. https://doi.org/10.1124/pr.117.015305
- Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60(6): 1181–1188. https://doi.org/10.1124/mol.60.6.1181
- Wolinsky TD, Swanson CJ, Smith KE, Zhong H, Borowsky B, Seeman P, Branchek T, Gerald CP (2007) The Trace Amine 1 receptor knockout mouse: An animal model with relevance to schizophrenia. Genes Brain Behav 6(7): 628–639. https://doi.org/10.1111/j.1601-183X.2006.00292.x
- Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, Bettler B, Wettstein JG, Borroni E, Moreau JL, Hoener MC (2008) Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther 324(3): 948–956. https://doi.org/10.1124/jpet.107.132647
- Espinoza S, Lignani G, Caffino L, Maggi S, Sukhanov I, Leo D, Mus L, Emanuele M, Ronzitti G, Harmeier A, Medrihan L, Sotnikova TD, Chieregatti E, Hoener MC, Benfenati F, Tucci V, Fumagalli F, Gainetdinov RR (2015) TAAR1 Modulates Cortical Glutamate NMDA Receptor Function. Neuropsychopharmacology 40(9): 2217–2227. https://doi.org/10.1038/npp.2015.65
- Khan MZ, Nawaz W (2016) The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomed Pharmacother 83: 439–449. https://doi.org/10.1016/j.biopha.2016.07.002
- Pei Y, Asif-Malik A, Canales JJ (2016) Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications. Front Neurosci 10: 148. https://doi.org/10.3389/fnins.2016.00148
- Berry MD, Gainetdinov RR, Hoener MC, Shahid M (2017) Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 180: 161–180. https://doi.org/10.1016/j.pharmthera.2017.07.002
- Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A, Bettler B, Hoener MC (2015) Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol 25(11): 2049–2061. https://doi.org/10.1016/j.euroneuro.2015.08.011
- Espinoza S, Ghisi V, Emanuele M, Leo D, Sukhanov I, Sotnikova TD, Chieregatti E, Gainetdinov RR (2015) Postsynaptic D2 dopamine receptor supersensitivity in the striatum of mice lacking TAAR1. Neuropharmacology 93: 308–313. https://doi.org/10.1016/j.neuropharm.2015.02.010
- Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (2005) Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85(3): 372–385. https://doi.org/10.1016/j.ygeno.2004.11.010
- Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, Caron MG, Gainetdinov RR (2011) Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol 80(3): 416–425. https://doi.org/10.1124/mol.111.073304
- Hoefig CS, Zucchi R, Köhrle J (2016) Thyronamines and Derivatives: Physiological Relevance, Pharmacological Actions, and Future Research Directions. Thyroid 26(12): 1656–1673. https://doi.org/10.1089/thy.2016.0178
- Efimova EV, Kozlova AA, Razenkova V, Katolikova NV, Antonova KA, Sotnikova TD, Merkulyeva NS, Veshchitskii AS, Kalinina DS, Korzhevskii DE, Musienko PE, Kanov EV, Gainetdinov RR (2021) Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice. Neuropharmacology 182: 108373. https://doi.org/10.1016/j.neuropharm.2020.108373
- Espinoza S, Sukhanov I, Efimova EV, Kozlova A, Antonova KA, Illiano P, Leo D, Merkulyeva N, Kalinina D, Musienko P, Rocchi A, Mus L, Sotnikova TD, Gainetdinov RR (2020) Trace Amine-Associated Receptor 5 Provides Olfactory Input into Limbic Brain Areas and Modulates Emotional Behaviors and Serotonin Transmission. Front Mol Neurosci 13: 18. https://doi.org/10.3389/fnmol.2020.00018
- Kalinina DS, Ptukha MA, Goriainova AV, Merkulyeva NS, Kozlova AA, Murtazina RZ, Shemiakova TS, Kuvarzin SR, Vaganova AN, Volnova AB, Gainetdinov RR, Musienko PE (2021) Role of the trace amine associated receptor 5 (TAAR5) in the sensorimotor functions. Sci Rep 11(1): 23092. https://doi.org/10.1038/s41598-021-02289-w
- Borton D, Micera S, Millán Jdel R, Courtine G (2013) Personalized neuroprosthetics. Sci Transl Med 5(210): 210rv2. https://doi.org/10.1126/scitranslmed.3005968
- Musienko P, Heutschi J, Friedli L, van den Brand R, Courtine G (2012). Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Exp Neurol. 235(1): 100–109. https://doi.org/10.1016/j.expneurol.2011.08.025
- Bachmann LC, Matis A, Lindau NT, Felder P, Gullo M, Schwab ME (2013) Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats. Sci Transl Med 5(208): 208ra146. https://doi.org/10.1126/scitranslmed.3005972
- Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010) Understanding wiring and volume transmission. Brain Res Rev 64(1): 137–159. https://doi.org/10.1016/j.brainresrev.2010.03.003
- Liu JF, Seaman R Jr, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM, Jun-Xu Li (2018) Role of trace amine-associated receptor 1 in nicotine's behavioral and neurochemical effects. Neuropsychopharmacology 43(12): 2435–2444. https://doi.org/10.1038/s41386-018-0017-9
- Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12(10): 1333–1342. https://doi.org/10.1038/nn.2401
- van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G (2012) Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336(6085): 1182–1185. https://doi.org/10.1126/science.1217416
- Dominici N, Keller U, Vallery H, Friedli L, van den Brand R, Starkey ML, Musienko P, Riener R, Courtine G (2012) Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat Med 18(7): 1142–1147. https://doi.org/10.1038/nm.2845
- Borton D, Bonizzato M, Beauparlant J, DiGiovanna J, Moraud EM, Wenger N, Musienko P, Minev IR, Lacour SP, Millán Jdel R, Micera S, Courtine G (2014) Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Res 78: 21–29. https://doi.org/10.1016/j.neures.2013.10.001
- Gozal EA, O'Neill BE, Sawchuk MA, Zhu H, Halder M, Chou CC, Hochman S (2014) Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord. Front Neural Circuits. 8: 134. https://doi.org/10.3389/fncir.2014.0013
Supplementary files
