УДК 615.917

ОПРЕДЕЛЕНИЕ РИЦИНА В ОБЪЕКТАХ **ОКРУЖАЮЩЕЙ** СРЕДЫ С ПОМОЩЬЮ **БИОТЕСТИРОВАНИЯ**

DOI: 10.36946/0869-7922-2020-5-43-49

Н.Ю. Роговская, А.Ю. Горбунов, Я.А. Дубровский, Н.С. Хлебникова, В.Н. Бабаков

ФГУП «НИИ гигиены, профпатологии и экологии человека» ФМБА России, 188663, Ленинградская область, г.п. Кузьмоловский, Российская Федерация

работе предложена система биотестирования токсичности рицина в объектах окружающей среды с помощью технологии мониторинга клеточного индекса в реальном времени. Определена концентрация полумаксимального ингибирования (IC50) рицина ~ 6,7 нг/мл для клеток гепатомы человека линии HepaRG. Добавление антител к А- и В-субъединицам рицина в среду клеток HepaRG приводит к цитопротекторному и антиапоптотическому эффекту на фоне цитотоксического действия рицина. Антитела к рицину нейтрализуют активацию киназы JNK (фосфорилированной по Thr183/Tyr185) и предотвращают накопление активных форм каспазы 8 (гидролизованной по Asp384) и каспазы 9 (гидролизованной по Asp315), индуцированные рицином в клетках HepaRG. Исследованные антитела также предотвращают снижение внутриклеточных уровней активных форм киназы Akt 1 (фосфорилированной по Ser473) и транскрипционного фактора р53 (фосфорилированного по Ser46), вызванные рицином. Система биотестирования с использованием антител к рицину может рассматриваться как специфичный метод идентификации токсина в объектах окружающей среды.

Ключевые слова: рицин, биотестирование, маркеры апоптоза.

Цит: Н.Ю. Роговская, А.Ю. Горбунов, Я.А. Дубровский, Н.С. Хлебникова, В.Н. Бабаков. Определение рицина в объектах окружающей среды с помощью биотестирования. Токсикологический вестник. 2020; 5:43-49

Введение. Рибосом-инактивирующие белки растений принадлежат к числу наиболее токсичных соединений. К таким белкам относится большое семейство лектинов [1,2], включая такие токсины как рицин, абрин, модецин и ряд других. Рицин входит в список соединений, контролируемых Конвенцией о запрещении химического оружия. Быстрое определение токсичных свойств рицина в объектах окружающей среды возможно с помощью биотестирования с использованием различных хорошо пролиферирующих клеточных линий [3,4].

Лектины способны высокоспецифично связывать терминальные β-галактозные поверхностные полисахаридные рецепторы с высокой аффинностью (k_a в диапазоне 10^7-10^8 M⁻¹c⁻¹) [5]. Рицин, абрин и модецин состоят из двух субъединиц со сходной структурой и активностью. Интактные белки имеют молекулярную массу в диапазоне 63-65 кДа и включают две субъединицы. Субъединицы связаны дисульфидной связью, которая ответственна за проявление токсических свойств. А-субъединица (эффектомер) обладает рибосом-инактивирующими свойствами, В-субъединица (гаптомер) содержит сайт связывания с углеводами. Интактный токсин проявляет свои токсические свойства в клетках, но не обладает рибосом-инактивирующей активностью на рибосомах в бесклеточных системах. Восстановление дисульфидной связи приводит к противоположному эффекту – диссоциированные субъединицы обладают рибосом-инактивирую-

Роговская Надежда Юрьевна (Rogovskaya Nadezhda Yur'evna), научный сотрудник ФГУП НИИ ГПЭЧ ФМБА России, Ленинградская область, г.п.Кузьмоловский, niigpech@rihophe.ru;

Горбунов Александр Юрьевич (Gorbunov Aleksandr Yur'evich), научный сотрудник ФГУП НИИ ГПЭЧ ФМБА России, Ленинградская область, г.п. Кузьмоловский, niigpech@rihophe.ru;

Дубровский Ярослав Александрович (Dubrovskii Yaroslav Aleksandrovich), кандидат биологических наук, старший научный сотрудник, ФГУП НИИ ГПЭЧ ФМБА России, Ленинградская область, г.п. Кузьмоловский, niigpech@rihophe.ru; Хлебникова Наталья Семёновна (Khlebnikova Natalia Semenovna), кандидат химических наук, начальник международного отдела ФГУП НИИ ГПЭЧ ФМБА

России, Ленинградская область, г.п. Кузьмоловский, niigpech@rihophe.ru;

Бабаков Владимир Николаевич (Babakov Vladimir Nikolaevich), кандидат биологических наук, ведущий научный сотрудник ФГУП НИИ ГПЭЧ ФМБА России, Ленинградская область, г.п. Кузьмоловский, babakov@rihophe.ru

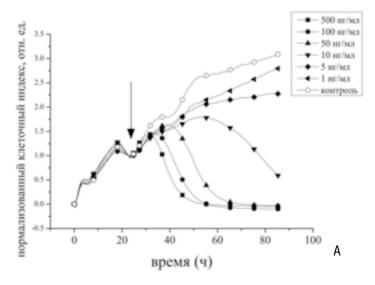
щей активностью в бесклеточных системах, но не обладают цитотоксическими свойствами. Причиной таких свойств являются особенности димера токсина. Молекула токсина связывается через сахарид-распознающий сайт В-субъединицы с β-галактозилсодержащими гликопротеидами или гликолипидными компонентами клеточной мембраны, находящихся на поверхности клеток. После связывания димера из двух субъединиц с клеткой, А-субъединица проникает внутрь клетки путем эндоцитоза. Оказавшись внутри клетки, А-субъединица связывается и ферментативно инактивирует 28S субъединицу рибосомы, в результате чего нарушается биосинтез белка, что и приводит к гибели клетки. Так как А-субъединица работает как фермент, даже одной молекулы токсина на клетку достаточно, чтобы серьезно нарушить биосинтез белка [5].

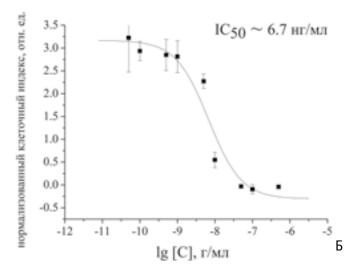
Таким образом, дополнительно к прямому определению токсина в объектах окружающей среды с помощью иммунохимических или химических методов [6,7] необходимо оценивать его токсические свойства. При наличии токсичности и подозрений о присутствии рицина требуется применение специфичного скринингового метода для дифференциации рицина от других потенциально вероятных рибосом-инактивирующих белков.

Основной *целью настоящей работы* являлась разработка скрининговой тест-системы на основе биотестирования для специфичной идентификации рицина в образцах объектов окружающей среды. В работе использовали клетки гепатомы человека линии HepaRG. Оценку жизнеспособности клеток при инкубации с серией разведений рицина проводили с помощью системы импедансометрии; кроме того, определяли внутриклеточные маркеры апоптоза. Определение специфической токсичности рицина проводили в присутствии антител к А- и В-субъединицам токсина.

Материалы и методы исследования. Клетки линии HepaRG (Gibco) культивировали во флаконах в среде Вильямса Е с добавлением 10% эмбриональной сыворотки крупного рогатого скота, средовых добавок инсулина и гидрокортизона, антибиотиков стрептомицина-пенициллина при 37 °C в CO₂-инкубаторе в атмосфере 5% CO₂.

Для определения интегральной цитотоксичности с помощью оборудования xCelligence RTCA, 10 тыс. клеток вносили в лунку специализированного планшета, позволяющего определять клеточный индекс в режиме реального времени, и культивировали в полной среде Вильямса. На следующий день после пассажа клеткам добавляли серию разведения (в диапазоне концентраций 1 нг/мл – 1 мкг/мл) очищенного рицина и рицина с одновременным добавлением анти-


тел в соотношении 100 мкл среды Вильямса и 100 мкл разведенного в растворе Хенкса токсина на лунку планшета. В работе использовали следующие антитела производства Авсат (Великобритания): AT1 – кат. № ab#27170 к B-субъединице; AT2 – кат. № ab#48415 к B-субъединице; AT3 – кат. № ав#27169 к А-субъединице. Мониторинг клеточного индекса проводили в течение 3 дней после добавления токсина. Очищенный рицин был предоставлен Организацией по запрещению химического оружия (ОЗХО) в качестве стандарта в рамках тренировочного теста по анализу биотоксинов. В рамках теста ОЗХО были предоставлены жидкие и сухие образцы, содержащие рицин и абрин в различных концентрациях. Для определения наличия рицина в образце делали серию разведений раствором Хенкса исходного образца до 10%, 1%, 0,1%. Из сухих образцов предварительно делали экстракт раствором Хенкса в соотношении 1:10.


Для получения данных по определению активированных молекулярных маркеров апоптоза, клетки культивировали в 24-луночных планшетах, промывали на следующий день после пассажа, добавляли среду, содержащую очищенный рицин или рицин с антителами и инкубировали 24 ч и 48 ч. Определение активированных фосфорилированных или протеолитически фрагментированных белков – маркеров апоптоза проводили с помощью иммуннофлуоресцентного метода по технологии Luminex xMAP. Использовали набор реактивов для определения ранних маркеров апоптоза (7-Plex MILLIPLEX MAP Early Apoptosis Magnetic Bead Kit, Kat. № 48-669MAG Merck/Millipore, США), который позволяет определять активированные фосфорилированные формы следующих белков: Akt1 (Ser473), p53 (Ser46), BAD (Ser112), Bcl-2 (Ser70), JNK (Thr183/Tyr185), а также активных форм каспазы 8 (гидролизованной по Asp384) и каспазы 9 (гидролизованной по Asp315). Клеточные лизаты получали по методике, опубликованной ранее [8]. Данные, полученные в ходе экспериментальных исследований, были обработаны в программе Bio-Plex Data Pro Plus. Оценку различий средних значений проводили с использованием однофакторного дисперсионного анализа (ANOVA).

Результаты и обсуждение. При добавлении в среду пролиферирующих клеток в диапазоне конечных концентраций от 1 до 500 нг/мл рицин вызывает гибель клеток дозозависимым образом (рис. 1А). Использование технологии мониторинга клеточного индекса в реальном времени позволяет оценить временные интервалы начала гибели клеток. Для высоких концентраций рицина (50-500 нг/мл) гибель клеток начинается через 6-12 ч, для низких (менее 10 нг/мл) – через 24-48 ч. Зависимость логарифма концентрации от нор-

мализованного клеточного индекса описывается сигмоидой с IC_{50} 6,7 нг/мл (рис. 1Б).

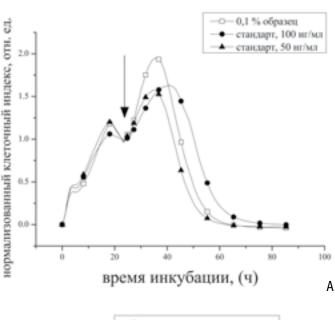
Время начала гибели клеточной популяции и форма кривой клеточного индекса коррелируют с концентрацией токсина, поэтому при наличии стандартной серии разведений рицина и серии разведений токсичного образца можно оценить концентрацию токсина. В качестве примера приведена цитотоксичность 0,1 % жидкого образца, содержащего рицин, в сравнении со стандартами рицина с концентрациями в 50 и 100 нг/мл (рис. 2A). Определение рицина проводилось в жидких образцах в рамках первого тренировочного теста ОЗХО 2017 года по анализу биотоксинов. Цитотоксичность образца находилась между известными концентрациями и соответствовала концентрации, определенной с помо-

щью идентификации протеотипических пептидов методом ВЭЖХ-МСМС [9].

Добавление антител к А- и В-субъединицам рицина в среду совместно с токсином приводит к меньшей гибели клеток относительно рицина. Рабочие конечные концентрации, нейтрализующие токсическое действие 10 нг/мл рицина, для антител были определены для АТ1 – 1 мкг/мл, для АТ2 – 10 мкг/мл, для АТ3 – 10 мкг/мл. В качестве примера приведены графики зависимости нормализованного клеточного индекса от времени инкубации клеток с рицином (10 нг/мл) и смеси рицин (10 нг/мл) и АТ1 (1 мкг/мл) (рис 2Б). Антитела АТ1 проявляли заметный цитопротекторный эффект. Сходные цитопротекторные профили имели и другие изученные антитела АТ2 и АТ3.

Цитопротекторное влияние оказывают как антитела к В-субъединице, вероятно препятствуя проникновению токсина внутрь клетки, так и антитела к ферментативной А-субъединице. Меньшая цитотоксичность рицина в присутствии антител к нему может рассматриваться как важный элемент специфичной идентификации токсина. Используемые антитела к рицину не влияли на цитотоксичность абрина (данные не представлены).

Рицин и абрин вызывают гибель клеток по апоптотическому пути [10]. Абрин индуцирует повышение экспрессии белка FADD, а также активирует каспазу-8 и каспазу-3, заметное повышение активных форм каспаз отмечено через 24 ч и их накопление усиливается к 48 ч в клетках линии Jurkat [11]. Печень является основным органом захвата рицина *in vivo* и проявления его цитотоксичности [12,13]. Рицин времязависимым образом повышает уровень активных форм каспазы-9 и каспазы-3, а также значительно повышает фрагментацию ДНК в клетках печени крыс [14].


Цитопротекторное влияние антител к А и В субъединицам рицина также оценивали по влиянию на внутриклеточные маркеры апоптоза через 24 ч и 48 ч.

Уровень активной формы киназы Akt1, обеспечивающей выживание клеток, резко падает в лизатах клеток через 48 ч действия рицина. Добавление антител AT1 и AT3 одновременно с рицином в культуральную среду возвращает активность этой киназы в клетках к контрольному уровню. Добавление антител AT2 через 24 ч снижает уровень фосфорилированной киназы Akt1 относительно рицина, но через 48 ч уровень статистически значимо был выше.

Рис. 1. Графики зависимости нормализованного клеточного индекса от времени инкубации с рицином (A) и от логарифма концентрации рицина (Б) в клетках HepaRG. На графике 1A отмечено время добавления токсина

Стрессактивируемая киназа JNK через 24 ч сильно активируется рицином, но через 48 ч интенсивность флуоресценции активной формы киназы JNK падает практически на порядок на фоне токсического действия рицина. Активность этой киназы при добавлении AT1 и AT3 практически не отличается от контрольного уровня. Добавление AT2 приводит к повышенному уровню активности киназы JNK через 24 и 48 ч относительно контроля.

Рицин приводит к резкому снижению активности транскрипционного фактора р53 уже через

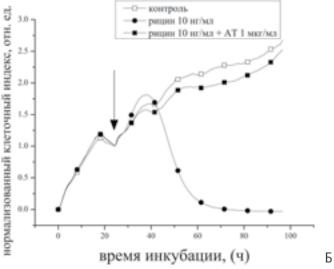
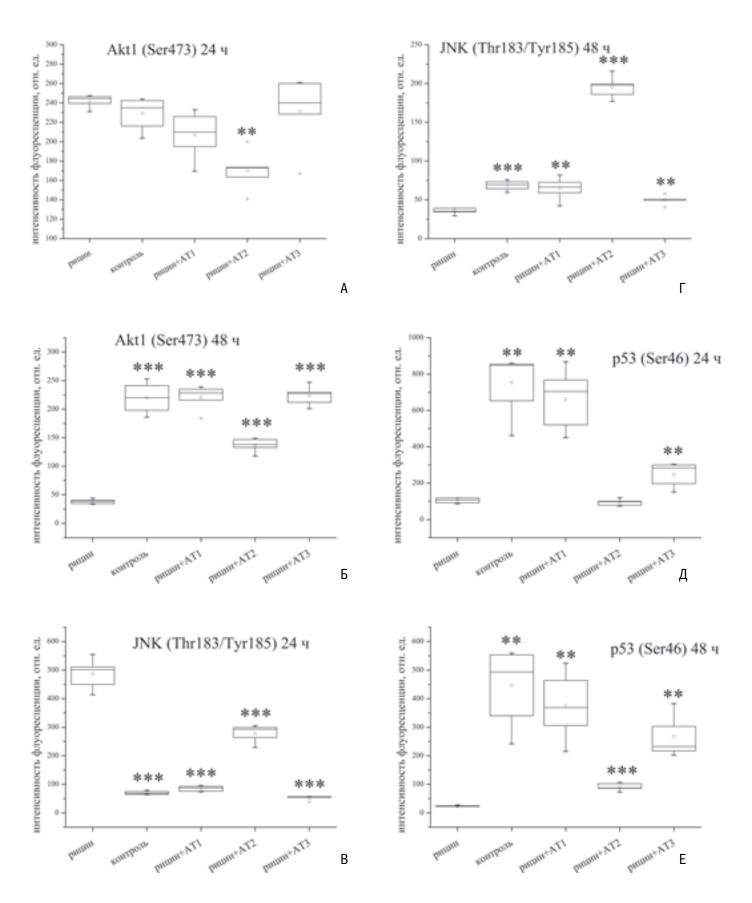
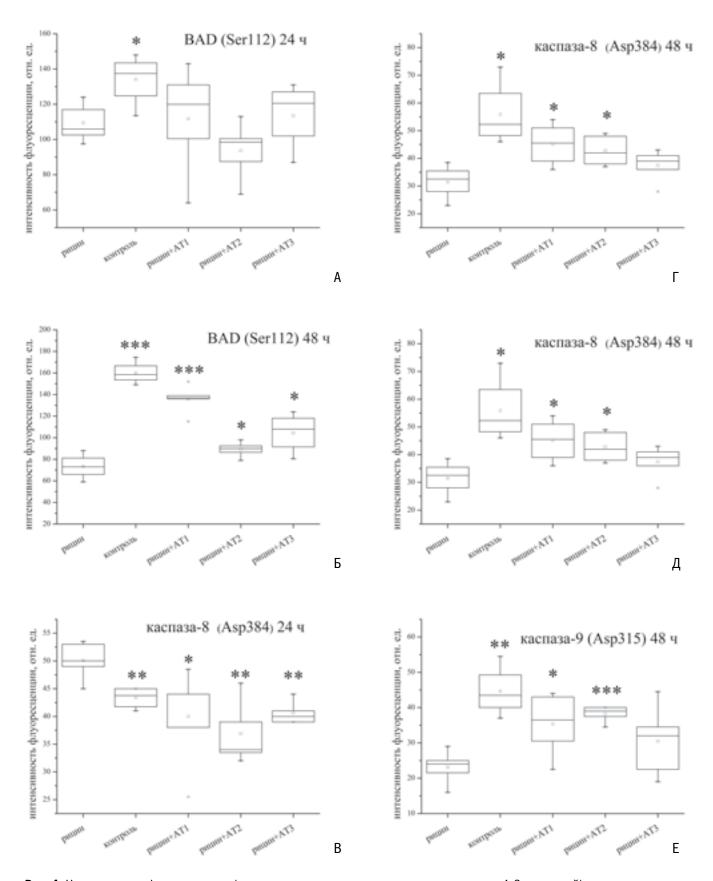


Рис. 2. Графики зависимости нормализованного клеточного индекса от времени инкубации с 0,1% раствором образца, содержащего рицин, и стандартами рицина 50 и 100 нг/мл (А); и от времени инкубации с раствором рицина 10 нг/мл и смесью рицина 10 нг/мл с антителами AT1 (1 мкг/мл) (Б) в клетках НераRG. На графиках отмечено время добавления токсина


24 ч. Добавка антител в различной степени восстанавливает уровень фосфорилированной формы белка p53 к контрольному уровню, что также может интерпретироваться как молекулярный сигнал к выживанию клетки (рис. 3).

Рицин приводит к снижению уровня фосфорилированной формы белка BAD относительно контроля, через 48 ч разница более чем двукратная. Антитела через 48 ч повышают уровень фосфо-BAD относительно рицина к контрольному уровню.


Рицин активирует ключевые ферменты, инициирующие апоптоз, каспазу-8 и каспазу-9 через 24 ч, через 48 ч уровень активных форм этих каспаз снижается. Добавление антител в инкубационную среду препятствует активации каспаз, вызванной воздействием рицина через 24 ч, а через 48 ч их уровень соответствует контрольному (рис. 4).

Таким образом, исследованные антитела к А- и В-субъединицам рицина предотвращают развитие апоптоза, индуцированного рицином. Добавление антител снижает процент погибших клеток относительно токсина, что может быть количественно измерено с помощью импедансометрии или, например, проточной цитофлуорометрии. При наличии стандарта рицина с помощью импедансометрии можно оценить ориентировочную концентрацию токсина в объектах окружающей среды. Снижение цитотоксичности рицина в присутствии антител к нему может рассматриваться как специфический признак его наличия в объектах окружающей среды и позволяет в течение нескольких дней идентифицировать активный токсин с помощью биотестирования, дополнительно к химическому или иммунохимическому его определению. Предложенные подходы позволили успешно идентифицировать образцы, содержащие рицин, в рамках тестов ОЗХО по анализу биоток-

Заключение. На основе клеточной линии HepaRG гепатомы человека и мониторинга клеточного индекса в реальном времени предложена тест-система по идентификации рибосом-инактивирующих белковых токсинов (на примере рицина) в объектах окружающей среды. Добавление антител к токсинам в культуральную среду одновременно с токсином приводит к цитопротекторному и антиапоптотическому эффекту на фоне токсического действия токсина. Система биотестирования с использованием антител к токсину может рассматриваться как специфичный метод идентификации токсина в объектах окружающей среды.

Рис. 3. Интенсивность флуоресценции (диаграмма размаха, медиана, среднее, границы 1-3 квартилей) фосфорилированных белков Akt1 (Ser473), JNK (Thr183/Tyr185) и белка p53 (Ser46) в лизатах клеток HepaRG через 24 ч и 48 ч после добавления рицина (10 нг/мл), смеси рицин и AT1 (1 мкг/мл), смеси рицин и AT2 (10 мкг/мл) и смеси рицин и AT3 (10 мкг/мл). Критический уровень значимости (ANOVA) * - p < 0,05; ** - p < 0,01; *** - p < 0,001.

Рис. 4. Интенсивность флуоресценции (диаграмма размаха, медиана, среднее, границы 1-3 квартилей) фосфорилированного белка BAD (Ser112), каспазы-8 (гидролизованной по Asp384) и каспазы-9 (гидролизованной по Asp315) в лизатах клеток HepaRG через 24 ч и 48 ч после добавления рицина (10 нг/мл), смеси рицин и AT1 (1 мкг/мл), смеси рицин и AT2 (10 мкг/мл) и смеси рицин и AT3 (10 мкг/мл). Критический уровень значимости (ANOVA) * - p < 0.05; ** - p < 0.01; *** - p < 0.001.

СПИСОК ЛИТЕРАТУРЫ

- 1. Козлов Ю.В., Сударкина О.Ю., Курманова А.Г. Рибосом-инактивирующие лектины растений Молекулярная биология. 2006; 40(4): 711-23.
- 2. Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L. Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules. 2016; 21(12). pii: E1627. 3. Bozza W P. Tolleson W H. Rivera
- 3. Bozza W.P., Tolleson W.H., Rivera Rosado L.A., Zhang B. Ricin detection: tracking active toxin. Biotechnol Adv. 2015; 33(1):117-123.
- 4. Синегубова Е.О., Дубровина И.А., Мясников В.А. Комплексный подход к оценке цитотоксичности рибосом-инактивирующих белков на клеточной модели in vitro. Медицина экстремальных ситуаций 2019; 21(S1): 53-62.
- **5.** Endo Y, Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism

- of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 1987; 262:8128-30.
- 6. Дубровский Я.А., Подольская Е.П. Определение токсинов пептидной природы методом MALDI-MS. Научное приборостроение. 2010; 20(4): 21-35. 7. Браун А.В., Таранченко В.Ф., Тихомиров Л.А., Гречухин А.П., Рыбальченко И.В. Обнаружение рицина в растительных экстрактах и почве с использованием жидкостной хромато-масс-спектрометрии высокого разрешения. Журнал аналитической химии. 2018; 73(8): 622-631.
- 8. Бабаков В.Н., Роговская Н.Ю., Курдюков И.Д., Бельтюков П.П., Дулов С.А., Радилов А.С. Влияние агонистов арилгидрокарбонового рецептора

- и липополисахарида на маркеры генотоксического действия бенз(а) пирена Токсикологический вестник 2019; (3):19-25.
- 9. Дубровский Я.А., Горбунов А.Ю., Роговская Н.Ю., Мурашко Е.А., Бельтюков П.П., Бабаков В.Н. Протеомный подход по определению биотоксинов в объектах окружающей среды. В сб.: Медико-биологические аспекты химической безопасности. Под общей редакцией А.С. Радилова, В.Р. Рембовского. 2018. С. 25-26
- **10.** Griffiths G.D., Leek M.D., Gee D.J. The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine. J Pathol. 1987:151(3):221-9.
- **11.** Saxena N., Yadav P., Kumar O. The Fas/ Fas ligand apoptotic pathway is involved

- in abrin-induced apoptosis. Toxicol Sci. 2013;135(1):103-18.
- 12. Fodstad O., Olsnes S., Pihl A. Toxicity, distribution and elimination of the cancer ostatic lectins abrin and ricin after parenteral injection into mice. Br J Cancer. 1976;34(4):418-75
- **13.** Ramsden C.S., Drayson M.T., Bell E.B. The toxicity, distribution and excretion of ricin holotoxin in rats. Toxicology. 1989;55(1-2):161-71.
- **14.** Authier F., Djavaheri-Mergny M., Lorin S., Frénoy J.P., Desbuquois B. Fate and action of ricin in rat liver in vivo: translocation of endocytosed ricin into cytosol and induction of intrinsic apoptosis by ricin B-chain. Cell Microbiol. 2016;18(12):1800-1814

REFERENCES:

- 1. Kozlov J.V., Sudarkina O.J., Kurmanova A.G. Ribosome-inactivating lectins of plants. Molecular Biology. 2006; 40(4): 635-646 (in Russian).
- 2. Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L. Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules. 2016; 21(12). pii: E1627.
- 3. Bozza W.P., Tolleson W.H., Rivera Rosado L.A., Zhang B. Ricin detection: tracking active toxin. Biotechnol Adv. 2015; 33(1):117-123.
- **4.** Sinegubova E.O., Dubrovina I.A., Myasnikov V.A. Complex approach to the estimation of cytotoxicity of ribosome-inactivating proteins on the cell model in vitro. Medicine of extreme situations. 2019; 21(S1): 53-62 (in Russian).
- 5. Endo Y, Tsurugi K. RNA N-glycosidase

- activity of ricin A-chain.Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 1987; 262:8128-
- Dubrovsky Ya.A., Podolskaya E.P. Peptide toxins identification by MALDI-MS method. Nauchnoe Priborostroenie (Scientific Instumentation) 2010; 20(4): 21-35 (in Russian).
- 7. Braun A.V., Tikhomirov L.A., Grechukhin A.P., Rybal'chenko I.V., Taranchenko V.F. Detection of ricin in plant extracts and soil using liquid chromatography-high-resolution mass spectrometry. J. Anal. Chem. 2018; 73(8):786-795 (in Russian). 8. Babakov V.N., Rogovskaya N.Yu., Kurdyukov I.D., Beltyukov P.P., Dulov S.A., Radilov A.S. Effect of arylhydrocarbon receptor agonists and
- lipopolysaccharide on benzo(a)pyrene genotoxicity markers. Toksikologicheskii vestnik (Toxicological Review). 2019; (3):19-25 (in Russian).
- 9. Dubrovskii Ya.A., Gorbunov A.Yu., Rogovskaya N.Yu., Murashko E.A., Beltyukov P.P., Babakov V.N. Proteomic approach of biotoxin detection in environmental samples. In: Proc. Med. Biol. Aspects of Chem. Safety. St. Petersburg. 2018: 25-26 (in Russian).
- **10.** *Griffiths* G.D., *Leek M.D.*, *Gee D.J.* The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine. J Pathol. 1987; 151(3):221-9.
- 11. Saxena N., Yadav P., Kumar O. The Fas/ Fas ligand apoptotic pathway is involved

- in abrin-induced apoptosis. Toxicol Sci. 2013;135(1):103-18.
- **12.** Fodstad O., Olsnes S., Pihl A. Toxicity, distribution and elimination of the cancer ostatic lectins abrin and ricin after parenteral injection into mice. Br J Cancer. 1976;34(4):418-25.
- **13.** Ramsden C.S., Drayson M.T., Bell E.B. The toxicity, distribution and excretion of ricin holotoxin in rats. Toxicology. 1989:55(1-2):161-71.
- 14. Authier F., Djavaheri-Mergny M., Lorin S., Frénoy J.P., Desbuquois B. Fate and action of ricin in rat liver in vivo: translocation of endocytosed ricin into cytosol and induction of intrinsic apoptosis by ricin B-chain. Cell Microbiol. 2016;18(12):1800-1814

N.Yu. Rogovskaya, A.Yu. Gorbunov, Ya.A. Dubrovskii, N.S. Khlebnikova, V.N. Babakov

DETERMINATION OF RICIN IN ENVIRONMENTAL SAMPLES USING BIOASSAY

Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency, 188663, Leningrad region, Russian Federation

A bioassay of ricin toxicity in environmental samples using real-time cell index monitoring is proposed. The half-maximal inhibitory concentration (IC_{50}) of ricin was estimated at 6,7 ng/ml for human hepatoma HepaRG cells proliferation. The antibodies to A- and B-subunits in HepaRG cell media lead to cytoprotective and antiapoptotic effects against the cytotoxicity of ricin. The antibodies neutralised activation of JNK kinase (phosphorylated at Thr183/Tyr185) and prevented accumulation of the active forms of caspase 8 (hydrolysed to Asp384) and caspase 9 (hydrolysed to Asp315) induced by ricin in HepaRG cells. The tested antibodies also prevented a decrease in the intracellular levels of the active forms of Akt 1 kinase (phosphorylated at Ser473) and transcription factor p53 (phosphorylated at Ser46) caused by ricin. The bioassay with antibodies can be considered as a specific method for identifying the toxin in environmental samples.

Keywords: ricin, bioassay, apoptosis markers.

Quote: N.Yu. Rogovskaya, A.Yu. Gorbunov, Ya.A. Dubrovskii, N.S. Khlebnikova, V.N. Babakov. Determination of ricin in environmental samples using bioassay. Toxicological Review. 2020; 5:43-49

Переработанный материал поступил в редакцию 17.02.2020 г.