Filtration with sediment erosion in a porous medium
- Autores: Kuzmina L.I.1, Osipov Y.V.2
-
Afiliações:
- National Research University Higher School of Economics
- National Research Moscow State University of Civil Engineering
- Edição: Nº 10 (2025)
- Páginas: 83-87
- Seção: Статьи
- URL: https://modernonco.orscience.ru/0585-430X/article/view/695830
- DOI: https://doi.org/10.31659/0585-430X-2025-840-10-83-87
- ID: 695830
Citar
Texto integral
Resumo
Models of transport and filtration of small particles in porous media are used in the construction industry when designing foundations and underground structures. A liquid with particles moves through the channels of a porous soil. When particles are transported, some of them are locked in the pores and form a sediment. If the fluid flows slowly, the sedimented particles, retained on the walls of wide pores or in the throats of narrow pores, remain motionless. The liquid and suspension cannot tear the sedimented particles away from the sedimentation sites. When the flow rate of the suspension or colloid increases, part of the sediment is washed out by the carrier fluid and is transferred through the pores. A one-dimensional model of particle transport in a homogeneous porous medium is considered, taking into account the sedimentation of suspended particles on the framework and the erosion of the sediment. The model specifies the relationship between suspended and sedimented particles and the balance of sedimentation and erosion of the sediment. At low suspension concentration, the intensity of sediment formation and rise depends on the filtration function and the concentration of suspended particles; sediment erosion is determined by the number of particles deposited on the framework of the porous medium. Analytical solutions to the model and asymptotics in the form of a traveling wave are obtained. The maximum concentration of sediment with simultaneous action of particle retention and lifting is found.
Palavras-chave
Texto integral
Sobre autores
L. Kuzmina
National Research University Higher School of Economics
Autor responsável pela correspondência
Email: lkuzmina@hse.ru
Candidate of Sciences (Physics and Mathematics), Associate Professor
Rússia, 20, Myasnitskaya Street, Moscow, 101000Yu. Osipov
National Research Moscow State University of Civil Engineering
Email: yuri-osipov@mail.ru
Candidate of Sciences (Physics and Mathematics), Associate Professor
Rússia, 26, Yaroslavskoe Highway, Moscow, 129337Bibliografia
- Tien C., Ramarao B.V. Granular filtration of aerosols and hydrosols. Amsterdam: Elsevier. 2007. 534 p. https://doi.org/10.1016/B978-1-85617-458-9.X5000-3
- Bedrikovetsky P. Mathematical theory of oil and gas recovery: with applications to ex-USSR oil and gas fields. Des Moines: Springer Science & Business Media. 2013. 596 p. https://doi.org/10.1007/978-94-017-2205-6
- Appelo C.A.J., Postma D. Geochemistry, groundwater and pollution. CRC Press. 2005. 683 p. https://doi.org/10.1201/9781439833544
- Lufingo M., Ndé-Tchoupé A.I., Hu R., Njau K.N., Noubactep C. A novel and facile method to characterize the suitability of metallic iron for water treatment. Water. 2019. Vol. 11 (12), 2465. https://doi.org/10.3390/w11122465
- Chen M., Wang D., Yang F., Xu X., Xu N., Cao X. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions. Environmental Pollution. 2017. Vol. 230, pp. 540–549. EDN: YFOQSH. https://doi.org/10.1016/j.envpol.2017.06.101
- Ibragimov M.N., Semkin V.V., Shaposhnikov A.V. Tsementatsiya gruntov inyektsiyey rastvorov v stroitel’stve [Cementation of soils by injection of solutions in construction]. Moscow: ASV. 2017. 266 p.
- Faramarzi L., Rasti A., Abtahi S.M. An experimental study of the effect of cement and chemical grouting on the improvement of the mechanical and hydraulic properties of alluvial formations. Construction and Building Materials. 2016. Vol. 126, pp. 32–43. https://doi.org/10.1016/j.conbuildmat.2016.09.006
- Tsuji M., Kobayashi S., Mikake S., Sato T., Matsui H. Post-grouting experiences for reducing groundwater inflow at 500 m depth of the mizunami underground research laboratory, Japan. Procedia Engineering. 2017. Vol. 191, pp. 543–550. https://doi.org/10.1016/j.proeng.2017.05.216
- Mammadov H.N., Suleimanova I.H., Tahirov B.M. High-effective lightweight aggregate obtained from glass-containing waste. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 66–71. (In Russian). EDN: DEJHPP. https://doi.org/10.31659/0585-430X-2020-787-12-66-71
- Fedorova G.D., Aleksandrov G.N., Scryabin A.P. Activation of structure-forming properties of graphene oxide in cement composites. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 17–23. (In Russian). EDN: RJFQOZ. https://doi.org/10.31659/0585-430X-2020-778-1-2-17-23
- Fedorova G.D., Skriabin A.P., Aleksandrov G.N. The study of the influence of graphene oxide on the strength of cement stone using river sand. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 16–22. (In Russian). EDN: VVEYNK. https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22
- Tien C. Principles of filtration. Oxford: Elsevier. 2012. 360 p.
- Chrysikopoulos C.V., Syngouna V.I. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments. Environmental Science and Technology. 2014. Vol. 48, pp. 6805–6813. https://doi.org/10.1021/es501295n
- Bashtani F., Ayatollahi S., Habibi A., Masihi M. Permeability reduction of membranes during particulate suspension flow; analytical micro model of size exclusion mechanism. Journal of Membrane Science. 2013. Vol. 435, pp. 155–164. https://doi.org/10.1016/j.memsci.2013.01.043
- Galaguz Yu.P., Kuzmina L.I., Osipov Yu.V. Problem of deep bed filtration in a porous medium with the initial deposit. Fluid Dynamics. 2019. Vol. 54 (1), pp. 85–97. https://doi.org/10.1134/S0015462819010063
- Kuzmina L.I., Osipov Yu.V. Filtration of suspension in a porous material. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 89–93. (In Russian). EDN: MQOQTM. https://doi.org/10.31659/0585-430X-2023-817-9-89-93
- Kuzmina L.I., Nazaikinskii V.E., Osipov Y.V. On a deep bed filtration problem with finite blocking time. Russian Journal of Mathematical Physics. 2019. Vol. 26 (1), pp. 130–134. EDN: WUYKUB. https://doi.org/10.1134/S1061920819010138
- Safina G. Numerical solution of filtration in porous rock. E3S Web Conf. 2019. Vol. 97. XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019). EDN: QDZLEV. https://doi.org/10.1051/e3sconf/20199705016
- Kuzmina L.I., Osipov Yu.V. Sedimentation of heterogeneous particles in a porous material. Stroitel’nye Materialy [Construction Materials]. 2024. No. 8, pp. 63–68. (In Russian). EDN: WJAWFU. https://doi.org/10.31659/0585-430X-2024-827-8-63-68
- Polyanin A.D. Tochnyye resheniya differentsial’nykh, integral’nykh, funktsional’nykh i drugikh matematicheskikh uravneniy [Exact solutions of differential, integral, functional, and other mathematical equations]. Moscow: IPMech RAS, 2023. 600 p.
- Polyanin A.D., Zhurov A.I. Metody razdeleniya peremennykh i tochnyye resheniya nelineynykh uravneniy matematicheskoy fiziki [Methods of separation of variables and exact solutions of nonlinear equations of mathematical physics]. Moscow: IPMech RAS. 2021. 383 p.
- Khilar K., Fogler S. Migration of fines in porous media. Dordrecht: Kluwer Academic Publishers. 1998. 173 p. https://doi.org/10.1007/978-94-015-9074-7
- Herzig J.P., Leclerc D.M., Le Goff P. Flow of suspensions through porous media – application to deep filtration. Journal of Industrial & Engineering Chemistry. 1970. Vol. 62 (8), pp. 8–35. https://doi.org/10.1021/ie50725a003
- Safina G.L. Numerical solution of the filtration problem with three types of particles. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 73–78. (In Russian). EDN: ENUHUQ. https://doi.org/10.31659/0585-430X-2023-815-7-73-78
- Altoe J.E.F., Bedrikovetsky P., Siqueira A.G., de Souza A.L.S., Shecaira F.S. Correction of basic equations for deep bed filtration with dispersion. Journal of Petroleum Science and Engineering. 2006. Vol. 51. Iss. 1–2, pp. 68–84. https://doi.org/10.1016/j.petrol.2005.11.010
- Bedrikovetsky P., Osipov Y., Kuzmina L., Malgaresi G. Exact upscaling for transport of size-distributed colloids. Water Resources Research. 2019. Vol. 55 (2), pp. 1011–1039. https://doi.org/10.1029/2018WR024261
- Nazaikinskii V.E., Bedrikovetsky P.G., Kuzmina L.I., Osipov Y.V. Exact solution for deep bed filtration with finite blocking time. SIAM Journal on Applied Mathematics. 2020. Vol. 80. Iss. 5. EDN: XVIUXU. https://doi.org/10.1137/19M130919
- Kuzmina L.I., Osipov Yu.V. Asymptotics of a particles transport problem. Vestnik MGSU. 2017. Vol. 12 (11), pp. 1278–1283. EDN: YMEBSX
- Loi G., Nguyen C., Chequer L., Russell T., Zeinijahromi A., Bedrikovetsky P. Treatment of oil production data under fines migration and productivity decline. Energies. 2023. Vol. 16 (8). 3523. EDN: PGSFEM. https://doi.org/10.3390/en16083523
Arquivos suplementares




