Thermodynamic characteristics of the structural modification “forsterite–magnesite”

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

According to the current environmental agenda of the Russian Federation, one of the most important tasks of the building materials industry is to find promising areas for integrated processing and increase the share of man-made raw materials, namely industrial waste. This fully applies to mining and processing plants, the waste of which is large-scale man-made raw material deposits. Based on the thermodynamic analysis, the feasibility of the transformation chain saponite→serpentine→forsterite→magnesite is shown by alternating the stages of mechanochemical activation of raw materials and high-temperature modification of intermediates. Chemical schemes of the mechanism of these transformations leading to the production of magnesia astringent compositions are given. The validity of the theoretical calculations has been experimentally confirmed by methods of differential thermal analysis and IR-spectroscopy. Experimental samples were obtained using a binder based on magnesite synthesized from serpentine. An aqueous solution of bischofite was used as the sealing solution. The tests carried out on their mechanical destruction have shown that the synthesized powders exhibit the properties of binders. Thus, the average values of certain parameters (ρ, Rcomp, and KCC) were: 1600 kg/m3; 5.78 MPa and 3.62 (respectively). The results obtained open up a new promising area of using the multi-tonnage waste of the kimberlite ore dressing process to develop technologies for the production of magnesia binders and a wide range of products based on them.

Full Text

Restricted Access

About the authors

M. A. Frolova

Lomonosov Northern (Arctic) Federal University

Author for correspondence.
Email: m.aizenstadt@narfu.ru

Candidate of Sciences (Chemistry)

Russian Federation, 17, Severnaya Dvina Embankment, Arkhangelsk, 163002

V. S. Lesovik

Belgorod State Technological University named after V.G. Shukhov

Email: naukavs@mail.ru

Doctor of Sciences (Engineering)

Russian Federation, 46, Kostyukova street, Belgorod, 308012

A. M. Ayzenshtadt

Lomonosov Northern (Arctic) Federal University

Email: a.isenshtadt@narfu.ru

Doctor of Sciences (Chemistry)

Russian Federation, 17, Severnaya Dvina Embankment, Arkhangelsk, 163002

V. V. Strokova

Belgorod State Technological University named after V.G. Shukhov

Email: vvstrokova@gmail.com

Doctor of Sciences (Engineering)

Russian Federation, 46, Kostyukova street, Belgorod, 308012

V. E. Danilov

Lomonosov Northern (Arctic) Federal University

Email: v.danilov@narfu.ru

Candidate of Sciences (Engineering)

Russian Federation, 17, Severnaya Dvina Embankment, Arkhangelsk, 163002

M. A. Malygina

Lomonosov Northern (Arctic) Federal University

Email: m.turobova@narfu.ru

Engineer, Graduate Student

Russian Federation, 17, Severnaya Dvina Embankment, Arkhangelsk, 163002

References

  1. Umnov V.A. Waste management in the mining industry. Gornyy Informatsionno-Analiticheskiy Byulleten’. 1995. No. 5, pp. 99–106. (In Russian). EDN: NBWUAD
  2. Shpilevaya (Verzhak) D.V., Garanin K.V. Diamond deposits of the Arkhangelsk region and environmental problems of their development. Vestnik of Moscow University. Series 4: Geology. 2005. No. 6, pp. 18–26. (In Russian). EDN: HTXTGP
  3. Aizenshtadt A.M., Morozova M.V., Frolova M.A., Tyurin A.M. Study of the possibility of using waste tailings of JSC severalmaz for the production of a mineral additive to cement binders. Obogashchenie Rud. 2024. No. 3, pp. 42–48. (In Russian). EDN: JZOTBF. https://doi.org/10.17580/or.2024.03.07
  4. Pustovgar A.P., Lukuttsova N.P., Ustinov A.G. Study of the properties of fine-grained concrete modified with a nanodispersed serpentinite additive. Vestnik MGSU. 2013. No. 3, pp. 155–162. (In Russian). EDN: PXOIXB
  5. Isaakyan A.R., Zulumyan N.O., Melikyan S.A., Beglaryan A.A. Use of hydrosilica gel isolated from serpentines to obtain nanosized β-wollastonite crystals. Zhurnal Fizicheskoy Khimii. 2020. Vol. 94. No. 10, pp. 1533–1538. (In Russian). EDN: RWHFGK. https://doi.org/10.31857/S0044453720100143
  6. Zyryanova V.N., Berdov G.I. Magnesia binders from brucite beneficiation waste Stroitel’nyye Materialy [Construction Materials]. 2006. No. 4, pp. 61–65. (In Russian). EDN: HTCIYJ
  7. Averina G.F., Chernykh T.N., Orlov A.A., Kramar L.Ya. dentification of the possibility of using magnesia waste from mining and processing plants for the production of binders. Stroitel’nyye Materialy [Construction Materials]. 2017. No. 5, pp. 86–89. (In Russian). EDN: YQGANZ
  8. Aizenshtadt A.M., Korolev E.V., Malygina M.A., et al. Structural modification of highly dispersed powders of overburden rocks made of saponite-containing bentonite clay. Fizika i Khimiya Obrabotki Materialov. 2023. No. 1, pp. 56–63. (In Russian). EDN: BGBWRA. https://doi.org/10.30791/0015-3214-2023-1-56-63
  9. Aizenshtadt A.M., Morozova M.V., Frolova M.A., et al. Saponite-containing waste from mining and processing enterprises – a raw material reserve for the building materials industry. Ekologiya i Promyshlennost’ Rossii. 2024. Vol. 28. No. 7, pp. 20–25. (In Russian). EDN: JLONBM. https://doi.org/10.18412/1816-0395-2024-7-20-25
  10. Cheng T.W., Ding Y.C., Chiu J.P. A study of synthetic forsterite refractory materials waste using serpentine cutting. Minerals Engineering. 2002. Vol. 15. Iss. 4, pp. 271–275. https://doi.org/10.1016/S0892-6875(02)00021-3
  11. Sara Lee K.Y., Christopher Chin K.M., Ramesh S., at al. Characterization of forsterite ceramics. Journal of Ceramic Processing Research. 2013. Vol. 14. No. 1, pp. 131–133.
  12. Herbert Todd Schaef, Bernard P McGrail, John L Loring, Mark E, Bowden, Bruce W Arey, Kevin M Rosso. Forsterite [Mg2SiO4)] carbonation in wet supercritical CO2: an in situ high-pressure X-ray diffraction study. Environ Sci Technol. 2013. Vol. 47 (1), pp. 174–181. https://doi.org/10.1021/es301126f
  13. Aizenshtadt A.M., Strokova V.V., Nelyubova V.V., et al. Physicochemical transformations of saponite-containing material during its activation by grinding. Fizika i Khimiya Obrabotki Materialov. 2024. No. 1, pp. 53–64. (In Russian). EDN: LSOZOU. https://doi.org/10.30791/0015-3214-2024-1-53-64
  14. Dorogokupets P.I., Dymshits A.M., Sokolova T.S., et al. Equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite and post-perovskite and the phase diagram of the Mg2SiO4 system at pressures up to 130 GPa. Geologiya i Geofizika. 2015. Vol. 56. No. 1–2, pp. 224–246. EDN: TKRZWB. https://doi.org/10.15372/GiG20150111
  15. Kremenetskaya I.P., Gurevich B.I., Ivanova T.K., Lashchuk V.V., Bubnova T.P. Binding properties of metaserpentine. Tekhnika i Tekhnologiya Silikatov. 2014. Vol. 21. No. 2, pp. 9–16. (In Russian). EDN: SEIWTD
  16. Korikova O.V., Valova M.S., Titova Yu.A., Murashkevich A.N., Fedorova O.V. Synthesis and spectroscopic study of Si, Ti, Mg, Zn oxides modified with L-proline. Zhurnal Prikladnoy Spektroskopii. 2021. Vol. 88. No. 3, pp. 398–407. (In Russian). EDN: PKHYFB
  17. Ustinova Yu.V., Nasonova A.E., Nikiforova T.P., Kozlov V.V. Study of the interaction of caustic magnesite with the addition of microsilica. Vestnik MGSU. 2012. No. 3, pp. 100–104. EDN: PDDNAF

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Functional dependence ∆G=f(Т) for the reaction: Mg2SiO4+2H2CO3→2MgCO3+SiO2+2H2O

Download (36KB)
3. Fig. 2. Experimental samples sealed with 8% bischofite solution

Download (78KB)
4. Fig. 3. DTA of modified serpentine powder

Download (68KB)
5. Fig. 4. IR spectrum of modified powder according to the scheme: serpentine→forsterite→magnesite→caustic magnesite

Download (62KB)

Copyright (c) 2025 ООО РИФ "СТРОЙМАТЕРИАЛЫ"