Structural analogues of thyronamines. Experimental and DFT calculated NMR 1H chemical shifts of 4-[4-(2-aminoethoxy)benzyl]aniline

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents the results of molecular modeling of the structure and evaluation of the 1Н nuclei chemical shifts of a new structural analog of endogenous thyronamines, 4-[4-(2-aminoethoxy)benzyl]aniline. For 4-[4-(2-aminoethoxy)benzyl]aniline, the molecular geometry was optimized at the B3LYP level with basis sets 6-31G(d,p), 6-31+G(d,p), 6-311G(d, p) both in the approximation of an isolated molecule and with allowance for the solvent. The 1H nuclei chemical shifts of 4-[4-(2-aminoethoxy)benzyl]aniline were estimated on the base of the magnetic screening constants calculated by the GIAO method. The nonspecific solvation with dimethyl sulfoxide and methanol within the polarized continuum model (IEFPCM) was taken into account both in optimizing the molecular geometry and in calculating the magnetic screening constants. The calculated chemical shifts of the 1H nuclei for 4-[4-(2-aminoethoxy)benzyl]aniline are in good agreement with the experimental ones obtained in DMSO-d6 as well as CD3OD solutions. Linear correlations were obtained between the calculated and experimental data.

Texto integral

Acesso é fechado

Sobre autores

A. Eresko

International Intergovernmental Organization “The Joint Institute for Nuclear Research”

Autor responsável pela correspondência
Email: a_eresko77@mail.ru
Rússia, ul. Joliot-Curie, 6, Dubna, 141980

E. Raksha

International Intergovernmental Organization “The Joint Institute for Nuclear Research”

Email: a_eresko77@mail.ru
ORCID ID: 0000-0002-5954-6361
Rússia, ul. Joliot-Curie, 6, Dubna, 141980

D. Filimonov

Federal State Budgetary Institution “V.K. Gusak Institute of Emergency and Reconstructive Surgery” of the Ministry of Health of the Russian Federation

Email: a_eresko77@mail.ru
ORCID ID: 0000-0002-4542-6860
Rússia, Leninskij ave, 47, Donetsk 283080

A. Muratov

Federal State Budget Scientific Institution “L.M. Litvinenko Institute of Physical Organic and Coal Chemistry”

Email: a_eresko77@mail.ru
Rússia, R. Luxemburg St, 70, Donetsk, 283114

A. Voitash

Federal State Budget Scientific Institution “L.M. Litvinenko Institute of Physical Organic and Coal Chemistry”

Email: a_eresko77@mail.ru
ORCID ID: 0000-0002-5441-3930
Rússia, R. Luxemburg St, 70, Donetsk, 283114

N. Trubnikova

Federal State Budgetary Institution “V.K. Gusak Institute of Emergency and Reconstructive Surgery” of the Ministry of Health of the Russian Federation

Email: a_eresko77@mail.ru
Rússia, Leninskij ave, 47, Donetsk 283080

Bibliografia

  1. Tan E.S., Naylor J.C., Groban E.S., Bunzow J.R., Jacobson M.P., Grandy D.K., Scanlan T.S. ACS Chem. Biol. 2009, 4(3), 209–220. doi: 10.1021/cb800304d
  2. Cichero E, Tonelli M. Future Med. Chem. 2017, 9 (13), 1507–1527. doi: 10.4155/fmc-2017-0044
  3. Hart M.E., Suchland K.L., Miyakawa M., Bunzow J.R., Grandy D.K., Scanlan T.S. J. Med. Chem. 2006, 49 (3), 1101–1112. doi: 10.1021/jm0505718
  4. Scanlan T.S., Suchland K.L., Hart M.E., Chiellini G., Huang Y., Kruzich P.J., Frascarelli S., Crossley D.A., Bunzow J.R., Ronca-Testoni S., Lin E.T., Hatton D., Zucchi R., Grandy D.K. Nature Med. 2004, 10 (6) 638–642. doi: 10.1038/nm1051
  5. DeBarber A.E., Geraci T., Colasurdo V.P., Hackenmueller S.A., Scanlan T.S. J. Chromatogr. A. 2008, 1210 (1) 55-59. doi: 10.1016/j.chroma.2008.09.022
  6. Doyle K.P., Suchland K.L., Ciesielski T.M., Lessov N.S., Grandy D.K., Scanlan T.S., Stenzel-Poore M.P. Stroke. 2007, 38 (9), 2569–2576. doi: 10.1161/STROKEAHA.106.480277
  7. Филимонов Д.А., Трубникова Н.Н., Белоцерковская М.А., Федорова А.А., Ересько А.Б., Марусиченко В.В. Междунар. неврол. ж. 2020. 16 (1), 65–71. doi: 10.22141/2224-0713.16.1.2020.197333 [Filmonov D.A., Trubnikova N.N., Belotserkovskaya M.A., Fedorova A.A., Eresko A.B., Marusichenko V.V. Int. Neurolog. J. 2020, 16 (1), 65–71.] doi: 10.22141/2224-0713.16.1.2020.197333
  8. Филимонов Д.А., Евтушенко С.К., Федорова А.А. Анналы клин. и эксперим. неврологии. 2023, 17 (1), 43–54. doi: 10.54101/ACEN.2023.1.6 [Filimonov D.A., Evtushenko S.K., Fedorova A.A. Ann. Clinical Experim. Neurology. 2023, 17 (1), 36–54. (In Russ.)] doi: 10.54101/ACEN.2023.1.6
  9. Manni M.E., De Siena G., Saba A., Marchini M., Landucci E., Gerace E., Zazzeri M., Musilli C., Pellegrini-Giampietro D., Matucci R., Zucchi R., and Raimondi L. Br. J. Pharmacol. 2013, 168(2), 354–362. doi: 10.1111/j.1476-5381.2012.02137.x
  10. Lv J., Liao J., Tan W., Yang L., Shi X., Zhang H., Chen L., Wang S., and Li, Q. Ann. Clin. Lab. Sci. 2018, 48(6), 736–742.
  11. Chiellini G., Nesi G., Sestito S., Chiarugi S., Runfola M., Espinoza S., Sabatini M., Bellusci L., Laurino A., Cichero E., Gainetdinov R.R., Fossa P., Raimondi L., Zucchi R., Rapposelli S. J. Med. Chem. 2016, 59 (21), 9825–9836. doi: 10.1021/acs.jmedchem.6b01092
  12. Chiellini G., Nesi G., Digiacomo M., Malvasi R., Espinoza S., Sabatini M., Frascarelli S., Laurino A., Cichero E., Macchia M., Gainetdinov R.R., Fossa P., Raimondi L., Zucchi R., Rapposelli S. J. Med. Chem. 2015, 58 (12), 5096–5107. doi: 10.1021/acs.jmedchem.5b00526
  13. Chiellini G., Bellusci L., Sabatini M., Zucchi R. Mol. Cell Endocrinol. 2017, 458, 149-155. doi: 10.1016/j.mce.2017.01.002
  14. Runfola M., Perni M., Yang X., Marchese M., Bacci A., Mero S., Santorelli F.M., Polini B., Chiellini G., Giuliani D., Vilella A., Bodria M., Daini E., Vandini E., Rudge S., Gul S., Wakelam M.O.J., Vendruscolo M., Rapposelli S. Pharmaceuticals (Basel). 2021, 14 (12), 1330. doi: 10.3390/ph14121330
  15. Bellusci L., Runfola M., Carnicelli V., Sestito S., Fulceri F., Santucci F., Lenzi P., Fornai F., Rapposelli S., Origlia N., Zucchi R., Chiellini G. Molecules. 2020, 25 (5), 1054. doi: 10.3390/molecules25051054
  16. Valiakhmetova O.Y., Kuznetsov V.V. Russ. J. Org. Chem. 2021, 57, 20–24. doi: 10.1134/S1070428021010036 [Валиахметова О.Ю., Кузнецов В.В. ЖОрХ. 2021, 57 (1), 29–34. doi: 10.31857/S0514749221010031]
  17. Sarac K. Russ. J. Org. Chem. 2020, 56(1), 119–128. doi: 10.1134/S1070428020010194
  18. Ересько А.Б., Ракша Е.В., Берестнева Ю.В., Муратов А.В., Войташ А.А., Толкунов В.С., Толкунов С.В. ЖОрХ. 2020, 56 (11), 1721–1730. doi: 10.1134/S1070428020110068 [Eresko A.B., Raksha E.V., Berestneva Y.V., Muratov A.V., Voitash A.A., Tolkunov V.S., Tolkunov S.V. Russ. J. Org. Chem. 2020, 56 (11), 1929–1936.] doi: 10.31857/S0514749220110063
  19. Ганина Т.А., Чертков В.А. ЖОрХ. 2019, 55(3), 411-419. doi: 10.1134/S107042801903014X [Ganina T.A., Chertkov V.A. Russ. J. Org. Chem. 2019, 55 (3), 354–361.] doi: 10.1134/S0514749219030145
  20. Белов К.В., Дышин А.А., Киселев М.Г., Крестьянинов М.А., Соборнова В.В., Ходов И.А. Сверхкритические Флюиды: Теория и Практика. 2021, 16 (2), 63–72. doi: 10.34984/SCFTP.2021.16.2.008 [Belov K.V., Dyshin A.A., Kiselev M.G., Krestyaninov M.A., Sobornova V.V., Kho-dov I.A. Russ. J. Phys. Chem. B. 2021, 15 (8), 1303–1309.] doi: 10.1134/S1990793121080145
  21. Marvin 5.10.4, ChemAxon, Calculator Plugins, 2014, http://www.chemaxon.com
  22. Becke A.D. J. Chem. Phys. 1993, 98, 5648–5652. doi: 10.1063/1.464913
  23. Lee C., Yang W., Parr R.G., Phys. Rev. B. 1988, 37, 785–789. doi: 10.1103/physrevb.37.785
  24. Lee T.J., Taylor P.R., Int. J. Quantum Chem., Quant. Chem. Symp. 1989, 36, 199-207. doi: 10.1002/qua.560360824
  25. Mennucci B., Tomasi J. J. Chem. Phys., 1997, 106, 5151–5158. doi: 10.1063/1.473558
  26. Mondal S., Mugesh G. Cryst. Growth Des., 2016, 16 (10), 5896–5906. doi: 10.1021/acs.cgd.6b00945
  27. Okabe N., Fujiwara T., Yamagata Y., Tomita K.I. Biochim. Biophys. Acta (BBA), 1982, 717 (1), 179–181 doi: 10.1016/0304-4165(82)90396-8
  28. Wolinski K., Hilton J.F., Pulay P., J. Am. Chem. Soc., 1990, 112, 8251–8260. doi: 10.1021/ja00179a005 8260
  29. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N.,. Millam J.M, Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G. A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., and Fox D.J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
  30. Беляков П.А., Анаников В.П. Изв. АН, Сер. хим., 2011, 5, 765–771. [Belaykov P.A., Ananikov V.P. Russ. Chem. Bull., 2011, 60, 783–789. doi: 10.1007/s11172-011-0125-8]

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The structure of endogenous thyronamines T0AM and T1AM, as well as their structural analogs – 4-[4-(2-aminoethoxy)benzyl]aniline (1) and 4-[4-(2-aminoethoxy)benzyl]phenol (2)

Baixar (68KB)
3. Fig. 2. Atom numbering and 3D model of 4-[4-(2-aminoethoxy)benzyl]aniline (1) with the main structural fragments: aniline (a), oxybenzoic (b) and ethylamine (c)

Baixar (76KB)
4. Fig. 3. 3D model of 4-[4-(2-aminoethoxy)benzyl]aniline (1) and visualization of frontier molecular orbitals (molecular geometry optimization was performed at the B3LYP/6-31G(d,p) level, bond lengths are given in Å)

Baixar (146KB)
5. Fig. 4. Chemical shifts of 1H nuclei calculated for the 4-[4-(2-aminoethoxy)benzyl]aniline molecule (1) (□ – B3LYP/6-31G(d,p), ○ – B3LYP/6-31+G(d,p) and ▲ – B3LYP/6-311G(d,p)) and obtained experimentally in DMSO-d6 (a) and CD3OD [12] (b)

Baixar (102KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024