Evolution of gas-phase hyperthermal fragmental negative ions of 1H-1,2,4-triazole in their interaction with a graphite-like conducting surface

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It has been established that during the interaction of hyperthermal fragmentary negative ions of 1H-1,2,4- triazole: C2H2N3– and C2N3– with the cleaned soot surface, the intensity of the effective yield curve of the C2H2N3– anion decreases, but the C2N3– anion does not. Based on density functional theory calculations and the use of a surface-induced charge model, a mechanism for neutralizing negative ions on the surface is proposed.

Sobre autores

E. Tseplin

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Email: tzeplin@mail.ru
Ufa, 450075 Russia

S. Tseplina

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

O. Khvostenko

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

Bibliografia

  1. Laskin J., Johnson G.E., Warneke J., Prabhakaran V. // Angew. Chem. Int. Ed. 2018. V. 57. No. 50. P. 16270.
  2. Cyriac J., Pradeep T., Kang H. et al. // Chem. Rev. 2012. V. 112. No. 10. P. 5356.
  3. Johnson G.E., Gunaratne D., Laskin J. // Mass Spectrom. Rev. 2016. V. 35. No. 4. Р. 439.
  4. Laskin J., Wang P., Hadjar O. // Phys. Chem. Chem. Phys. 2008. V. 10. No. 8. P. 1079.
  5. Zhu C., Yang G. // Chem. Phys. Chem. 2016. V. 17. No. 16. Р. 2482.
  6. Chen L., Guo Y., Xu Z., Yang X. // Chem. Phys. Chem. 2018. V. 19. No. 21. Р. 2954.
  7. Armbrust N., Gudde J., Hofer U. // New J. Phys. 2015. V. 17. Art. No. 103043.
  8. Silkin V.M., Kogan E., Gumbs G. // Nanomaterials. 2021. V. 11. No. 6. Art. No. 1561.
  9. Shi G., Ding Y., Fang H. // J. Comput. Chem. 2012. V. 33. No. 14. Р. 1328.
  10. Guo X., Liu P., Ding B. et al. // J. Phys. Chem. C. 2021. V. 125. No. 25. Р. 13997.
  11. Oliphant M.L.E., Rutherford E. // Proc. Royal. Soc. A. 1930. V.127. No. 805. P. 373.
  12. Ustaze S., Verucchi R., Lacombe S. et al. // Phys. Rev. Lett. 1997. V. 79. No. 18. Р. 3526.
  13. Гайнуллин И.К., Зыкова Е.Ю., Дудников В.Г. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 673; Gainullin I.K., Zykova E.Yu., Dudnikov V.G. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 562.
  14. Geada I.L., Ramezani-Dakhel H., Jamil T. et al. // Nature Commun. 2018. V. 9. Art. No. 716.
  15. Fiermans L., Vennik J., Dekeyser W. Electron and ion spectroscopy of solids. N.Y.: Plenum Press, 1978.
  16. Ustaze S., Verucchi R., Lacombe S. et al. // Phys. Rev. Lett. 1997. V. 79. No. 18. Р. 3526.
  17. Borisov A.G., Esaulov V.A. // J. Phys. Cond. Matter. 2000. V. 12. No. 13. Art. No. R177.
  18. Tseplin E.E., Tseplina S.N., Lukin V.G., Khvostenko O.G. // Chem. Phys. Lett. 2022. V. 797. Art. No. 139583.
  19. Цеплин E.E., Цеплина С.Н., Лукин В.Г., Хвостенко О.Г. // Химия высоких энергий. 2022. Т. 56. № 5. С. 372; Tseplin E.E., Tseplina S.N., Lukin V.G., Khvostenko O.G. // High Energy Chem. 2022. V. 56. No. 5. P. 348.
  20. Saqib M., Izadi F., Isierhienrhien L.U. et al. // Phys. Chem. Chem. Phys. 2023. V. 25. No. 20. P. 13892.
  21. Хвостенко В.И. Масс-спектрометрия отрицательных ионов в органической химии. М.: Наука, 1981.
  22. Лукин В.Г., Хвостенко О.Г. // УФН 2017. Т. 187. № 9. С. 981; Lukin V.G., Khvostenko O.G. // Phys. Usp. 2017. V. 60. No. 9. P. 911.
  23. Лукин В.Г., Хвостенко О.Г., Хатымова Л.З. и др. // Хим. физика. 2021. T. 40. № 11. С. 29; Lukin V.G., Khvostenko O.G., Khatymova L.Z. et al. // Rus. J. Phys. Chem. B. 2021. V. 15. No. 6. P. 1008.
  24. Becke A.D. // J. Chem. Phys. 1993. V. 98. No. 7. Р. 5648.
  25. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. No. 2. Р. 785.
  26. Petersson G.A., Al-Laham M.A. // J. Chem. Phys. 1991. V. 94. No. 9. Р. 6081.
  27. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision C1. Gaussian Inc, 2009.
  28. Almbladh C.-O., Pedroza A.C. // Phys. Rev. A. 1984. V. 29. No. 5. P. 2322.
  29. Gruning M., Gritsenko O., van Gisbergen S.J.A., Baerends E.J. // J. Chem. Phys. 2002. V. 116. No. 22. P. 9591.
  30. Baerends E.J., Gritsenko O.V., van Meer R. // Phys. Chem. Chem. Phys. 2013. V. 15. No. 39. P. 16408.
  31. Amati M., Stoia S., Baerends E.J. // J. Chem. Theory Comput. 2020. V. 16. No. 1. P. 443.
  32. Iglesias-Garca A., Romero M.A., Garca E.A., Goldberg E.C. // Phys. Rev. B. 2020. V. 102. No. 11. Art. No. 115406.
  33. Wal R.L.V., Tomasek A.J. // Combust. Flame. 2004. V. 136. No. 1-2. Р. 129.
  34. D’Anna A. // In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2015.
  35. Chylek P., Jennings S.G., Pinnick R. // In: Encyclopedia of Atmospheric Sciences, 2nd ed. Elsevier, 2015. V. 1. Р. 86.
  36. Fomenko V.S. Handbook of thermionic properties. N.Y.: Plenum Press, 1966.
  37. Claessen R., Carstensen H., Skibowski M. // Phys. Rev. B. 1988. V. 38. No. 17. Р. 12582.
  38. Yan R., Zhang Q., Li W. et al. // Appl. Phys. Lett. 2012. V. 101. No. 2. Art. No. 022105.
  39. Moos G., Gahl C., Fasel R. et al. // Phys. Rev. Lett. 2001. V. 87. No. 26. Art. No. 267402.
  40. Lehmann J., Merschdorf M., Thon A. et al. // Phys. Rev. B. 1999. V. 60. No. 24. Р. 17037.
  41. Silkin V.M., Kogan E., Gumbs G. // Nanomaterials. 2021. V. 11. No. 6. Art. No. 1561.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025