Evolution of gas-phase hyperthermal fragmental negative ions of 1H-1,2,4-triazole in their interaction with a graphite-like conducting surface
- Autores: Tseplin E.E.1, Tseplina S.N.1, Khvostenko O.G.1
-
Afiliações:
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 364–368
- Seção: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://modernonco.orscience.ru/0367-6765/article/view/686012
- DOI: https://doi.org/10.31857/S0367676525030049
- EDN: https://elibrary.ru/FRIOXX
- ID: 686012
Citar
Resumo
It has been established that during the interaction of hyperthermal fragmentary negative ions of 1H-1,2,4- triazole: C2H2N3– and C2N3– with the cleaned soot surface, the intensity of the effective yield curve of the C2H2N3– anion decreases, but the C2N3– anion does not. Based on density functional theory calculations and the use of a surface-induced charge model, a mechanism for neutralizing negative ions on the surface is proposed.
Sobre autores
E. Tseplin
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
Email: tzeplin@mail.ru
Ufa, 450075 Russia
S. Tseplina
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
O. Khvostenko
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
Bibliografia
- Laskin J., Johnson G.E., Warneke J., Prabhakaran V. // Angew. Chem. Int. Ed. 2018. V. 57. No. 50. P. 16270.
- Cyriac J., Pradeep T., Kang H. et al. // Chem. Rev. 2012. V. 112. No. 10. P. 5356.
- Johnson G.E., Gunaratne D., Laskin J. // Mass Spectrom. Rev. 2016. V. 35. No. 4. Р. 439.
- Laskin J., Wang P., Hadjar O. // Phys. Chem. Chem. Phys. 2008. V. 10. No. 8. P. 1079.
- Zhu C., Yang G. // Chem. Phys. Chem. 2016. V. 17. No. 16. Р. 2482.
- Chen L., Guo Y., Xu Z., Yang X. // Chem. Phys. Chem. 2018. V. 19. No. 21. Р. 2954.
- Armbrust N., Gudde J., Hofer U. // New J. Phys. 2015. V. 17. Art. No. 103043.
- Silkin V.M., Kogan E., Gumbs G. // Nanomaterials. 2021. V. 11. No. 6. Art. No. 1561.
- Shi G., Ding Y., Fang H. // J. Comput. Chem. 2012. V. 33. No. 14. Р. 1328.
- Guo X., Liu P., Ding B. et al. // J. Phys. Chem. C. 2021. V. 125. No. 25. Р. 13997.
- Oliphant M.L.E., Rutherford E. // Proc. Royal. Soc. A. 1930. V.127. No. 805. P. 373.
- Ustaze S., Verucchi R., Lacombe S. et al. // Phys. Rev. Lett. 1997. V. 79. No. 18. Р. 3526.
- Гайнуллин И.К., Зыкова Е.Ю., Дудников В.Г. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 673; Gainullin I.K., Zykova E.Yu., Dudnikov V.G. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 562.
- Geada I.L., Ramezani-Dakhel H., Jamil T. et al. // Nature Commun. 2018. V. 9. Art. No. 716.
- Fiermans L., Vennik J., Dekeyser W. Electron and ion spectroscopy of solids. N.Y.: Plenum Press, 1978.
- Ustaze S., Verucchi R., Lacombe S. et al. // Phys. Rev. Lett. 1997. V. 79. No. 18. Р. 3526.
- Borisov A.G., Esaulov V.A. // J. Phys. Cond. Matter. 2000. V. 12. No. 13. Art. No. R177.
- Tseplin E.E., Tseplina S.N., Lukin V.G., Khvostenko O.G. // Chem. Phys. Lett. 2022. V. 797. Art. No. 139583.
- Цеплин E.E., Цеплина С.Н., Лукин В.Г., Хвостенко О.Г. // Химия высоких энергий. 2022. Т. 56. № 5. С. 372; Tseplin E.E., Tseplina S.N., Lukin V.G., Khvostenko O.G. // High Energy Chem. 2022. V. 56. No. 5. P. 348.
- Saqib M., Izadi F., Isierhienrhien L.U. et al. // Phys. Chem. Chem. Phys. 2023. V. 25. No. 20. P. 13892.
- Хвостенко В.И. Масс-спектрометрия отрицательных ионов в органической химии. М.: Наука, 1981.
- Лукин В.Г., Хвостенко О.Г. // УФН 2017. Т. 187. № 9. С. 981; Lukin V.G., Khvostenko O.G. // Phys. Usp. 2017. V. 60. No. 9. P. 911.
- Лукин В.Г., Хвостенко О.Г., Хатымова Л.З. и др. // Хим. физика. 2021. T. 40. № 11. С. 29; Lukin V.G., Khvostenko O.G., Khatymova L.Z. et al. // Rus. J. Phys. Chem. B. 2021. V. 15. No. 6. P. 1008.
- Becke A.D. // J. Chem. Phys. 1993. V. 98. No. 7. Р. 5648.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. No. 2. Р. 785.
- Petersson G.A., Al-Laham M.A. // J. Chem. Phys. 1991. V. 94. No. 9. Р. 6081.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision C1. Gaussian Inc, 2009.
- Almbladh C.-O., Pedroza A.C. // Phys. Rev. A. 1984. V. 29. No. 5. P. 2322.
- Gruning M., Gritsenko O., van Gisbergen S.J.A., Baerends E.J. // J. Chem. Phys. 2002. V. 116. No. 22. P. 9591.
- Baerends E.J., Gritsenko O.V., van Meer R. // Phys. Chem. Chem. Phys. 2013. V. 15. No. 39. P. 16408.
- Amati M., Stoia S., Baerends E.J. // J. Chem. Theory Comput. 2020. V. 16. No. 1. P. 443.
- Iglesias-Garca A., Romero M.A., Garca E.A., Goldberg E.C. // Phys. Rev. B. 2020. V. 102. No. 11. Art. No. 115406.
- Wal R.L.V., Tomasek A.J. // Combust. Flame. 2004. V. 136. No. 1-2. Р. 129.
- D’Anna A. // In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2015.
- Chylek P., Jennings S.G., Pinnick R. // In: Encyclopedia of Atmospheric Sciences, 2nd ed. Elsevier, 2015. V. 1. Р. 86.
- Fomenko V.S. Handbook of thermionic properties. N.Y.: Plenum Press, 1966.
- Claessen R., Carstensen H., Skibowski M. // Phys. Rev. B. 1988. V. 38. No. 17. Р. 12582.
- Yan R., Zhang Q., Li W. et al. // Appl. Phys. Lett. 2012. V. 101. No. 2. Art. No. 022105.
- Moos G., Gahl C., Fasel R. et al. // Phys. Rev. Lett. 2001. V. 87. No. 26. Art. No. 267402.
- Lehmann J., Merschdorf M., Thon A. et al. // Phys. Rev. B. 1999. V. 60. No. 24. Р. 17037.
- Silkin V.M., Kogan E., Gumbs G. // Nanomaterials. 2021. V. 11. No. 6. Art. No. 1561.
Arquivos suplementares
