Analysis of aeroacoustic characteristics of a supersonic jet at designed conditions based on numerical simulation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work is devoted to the numerical simulation of aeroacoustic characteristics of a supersonic jet issuing from a Laval nozzle at the design Mach number M=2. The results of the large-eddy simulations (LES) are presented. Characteristics of mean jet flow and its fluctuations, as well as the characteristics of the far-field jet noise, including its azimuthal content, are obtained. The results of the simulation are compared with experimental data and their acceptable agreement is shown. It is concluded that there are various noise generation mechanisms in the considered jet.

Texto integral

Acesso é fechado

Sobre autores

O. Bychkov

FAI TsAGI, Research Moscow Complex TsAGI

Email: georgefalt@rambler.ru
Rússia, Moscow

I. Mironyuk

FAI TsAGI, Research Moscow Complex TsAGI

Email: georgefalt@rambler.ru
Rússia, Moscow

I. Solntsev

FAI TsAGI, Research Moscow Complex TsAGI

Email: georgefalt@rambler.ru
Rússia, Moscow

G. Faranosov

FAI TsAGI, Research Moscow Complex TsAGI

Autor responsável pela correspondência
Email: georgefalt@rambler.ru
Rússia, Moscow

M. Yudin

FAI TsAGI, Research Moscow Complex TsAGI

Email: georgefalt@rambler.ru
Rússia, Moscow

Bibliografia

  1. Lighthill M.J. On sound generated aerodynamically: I. General theory // Proc. Royal Soc. Series A. 1952. V. 211. P. 564−581.
  2. Седельников Т.Х. О частотном спектре шума сверхзвуковой струи. Физика аэродинамических шумов. М.: Наука, 1967. 83.
  3. Tam C.K.W., Burton D.E. Sound generated by instability waves of supersonic flows: Part 2. Axisymmetric jets // J. Fluid Mech. 1984. V. 138. P. 273−295.
  4. Kopiev V., Chernyshev S., Zaitsev M., Kuznetsov V. Experimental validation of instability wave theory for round supersonic jet // AIAA Paper. 2006. AIAA-2006–2595.
  5. Зайцев М.Ю., Копьев В.Ф., Чернышев С.А. Экспериментальное исследование роли волн неустойчивости в механизме излучения шума сверхзвуковой струей // Изв. РАН. МЖГ. 2009. № 4. С. 124−133.
  6. Kopiev V., Zaitsev M., Chernyshev S., Ostrikov N. Vortex ring input in subsonic jet noise // Int. J. Aeroacoustics. 2007. V. 6. № 4. P. 375−405.
  7. Tam C., Aurialt L. Jet mixing noise from fine-scale turbulence // AIAA Journal. 1999. V. 37. № 2. P. 145–153.
  8. Goldstein M.E. A generalized acoustic analogy // J. Fluid Mech. 2003. V. 488. P. 315−333.
  9. Копьев В.Ф., Чернышев С.А. Новая корреляционная модель каскада турбулентных пульсаций как источника шума в струях // Акуст. журн. 2012. Т. 58. № 4. С. 482−497.
  10. Tam C.K., Viswanathan K., Ahuja K.K., Panda J. The sources of jet noise: experimental evidence // J. Fluid Mech. 2008. V. 615. P. 253−292.
  11. Крашенинников С.Ю., Миронов А.К., Бендерский Л.А. Анализ шумообразования турбулентных струй на основании исследования их ближнего акустического поля // Акуст. журн. 2018. Т. 64. С. 704−717.
  12. Бычков О.П., Зайцев М.Ю., Копьев В.Ф., Фараносов Г.А., Чернышев С.А. О двух подходах к моделированию шума низкоскоростных дозвуковых струй // Докл. Росс. Акад. Наук. Физика, Технические Науки. 2022. Т. 506. № 1. С. 16−25.
  13. Копьев В.Ф., Чернышев С.А. Анализ вторичного звукового излучения в акустической аналогии с оператором распространения, содержащим вихревые моды // Акуст. журн. 2022. Т. 68. С. 647−669.
  14. Kopiev V.F. On the possibility and prospects of turbulent flow noise control // CD-ROM Proceedings. FM11-12156. XXI ICTAM. 15-21 August 2004. Warsaw. Poland.
  15. Копьев В.А., Панкратов И.В., Копьев В.Ф., Ульяницкий В.Ю. Разработка плазменного актуатора на основе барьерного разряда для управления шумом турбулентной струи, истекающей из сверхзвукового сопла // Сборник Тезисов Всероссийского аэроакустического форума. 2021. С. 110−111.
  16. Shur M.L., Spalart P.R., Strelets M.Kh. Noise Prediction for Increasingly Complex Jets. Part I: Methods and Tests. Part II: Applications // Int. J. Aeroacoustics. 2005. V. 4. № 3−4. P. 213−266.
  17. Faranosov G.A., Goloviznin V.M., Karabasov S.A., Kondakov V.G., Kopiev V.F., Zaitsev M.A. CABARET method on unstructured hexahedral grids for jet noise computation // Computers & Fluids. 2013. V. 88. P. 165−179.
  18. Markesteijn A.P., Karabasov S.A. GPU CABARET solver extension to handle complex geometries utilizing snappyHexMesh with asynchronous time stepping // AIAA Paper. 2017. AIAA-2017-4184.
  19. Duben A.P., Kozubskaya T.K. Evaluation of quasi-one-dimensional unstructured method for jet noise prediction // AIAA Journal. 2019. V. 57. № 12. P. 5142−5155.
  20. Brès G.A., Lele S.K. Modelling of jet noise: a perspective from large-eddy simulations // Phil. Trans. Royal Soc. A. 2019. V. 377. P. 20190081.
  21. Faranosov G.A., Kopiev V.F., Karabasov S.A. Application of azimuthal decomposition technique for validation of CAA methods // AIAA Paper. 2013. AIAA-2013-2238.
  22. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1969. 824 с.
  23. Najafi-Yazdi A., Brès G.A., Mongeau L. An acoustic analogy formulation for moving sources in uniformly moving media // Proc. Royal Soc. A. 2011. V. 467. P. 144−165.
  24. Ozawa Y., Ibuki T., Nonomura T., Suzuki K., Komuro A., Ando A., Asai K. Single-pixel resolution velocity/convection velocity field of a supersonic jet measured by particle/schlieren image velocimetry // Experiments in Fluids. 2020. V. 61. № 129. P. 1−18.
  25. Бычков О.П., Фараносов Г.А. О связи пульсаций скорости и давления на оси и в ближнем поле турбулентной струи // Изв. РАН. МЖГ. 2021. № 4. С. 41−51.
  26. Witze P.O. Centerline velocity decay of compressible free jets // AIAA Journal. 1974. V. 12. № 4. P. 417−418.
  27. Bridges J., Wernet M. Establishing consensus turbulence statistics for hot subsonic jets // AIAA Paper. 2010. AIAA-2010-3751.
  28. Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms // IEEE Trans. Audio Electroacoust. 1967. V. 15. № 2. P. 70−73.
  29. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.
  30. Kopiev V.F., Zaitsev M.Yu., Chernyshev S.A. Sound radiation from a free vortex ring and a ring crossing an obstacle // AIAA Paper. 1998. AIAA-1998-2371.
  31. Зайцев М.Ю., Копьев В.Ф., Котова А.Н. Представление звукового поля турбулентного вихревого кольца суперпозицией квадруполей // Акуст. журн. 2001. Т. 47. № 6. С. 793−801.
  32. Зайцев М.Ю., Копьев В.Ф. Механизм генерации звука турбулентностью вблизи твердого тела // Изв. РАН МЖГ. 2008. Т. 43. №. 1. С. 98−109.
  33. Бычков О.П., Копьев В.Ф., Фараносов Г.А. Азимутальная декомпозиция шума струи, истекающей из двухконтурного сопла // Акуст. журн. 2022. Т. 68. № 4. С. 415−426.
  34. Faranosov G., Belyaev I., Kopiev V., Zaytsev M., Aleksentsev A., Bersenev Y., Chursin V., Viskova T. Adaptation of the azimuthal decomposition technique to jet noise measurements in full-scale tests // AIAA Journal. 2017. V. 55. № 2. P. 572−584.
  35. Faranosov G., Belyaev I., Kopiev V., Bychkov O. Azimuthal structure of low-frequency noise of installed jet // AIAA Journal. 2019. V. 57. № 5. P. 1885–1898.
  36. Towne A., Cavalieri A.V., Jordan P., Colonius T., Schmidt O., Jaunet V., Brès G.A. Acoustic resonance in the potential core of subsonic jets // J. Fluid Mech. 2017. V. 825. P. 1113−1152.
  37. Bogey C. Tones in the acoustic far field of jets in the upstream direction // AIAA Journal. 2022. V. 60. № 4. P. 2397−2406.
  38. Cavalieri A.V.G., Rodriguez D., Jordan P., Colonius T., Gervais Y. Wavepackets in the velocity field of turbulent jets // J. Fluid Mech. 2013. V. 730. P. 559−592.
  39. Lush P.A. Measurements of subsonic jet noise and comparison with theory // J. Fluid Mech. 1971. V. 46. № 3. P. 477−500.
  40. Бычков О.П., Фараносов Г.А. Экспериментальное исследование и теоретическое моделирование шума взаимодействия струи и крыла самолета // Акуст. журн. 2018. Т. 64. № 4. С. 437−453.
  41. Kopiev V., Chernyshev S. Correlation model of quadrupole noise sources in turbulent jet: effect of refraction // AIAA paper. 2015. AIAA-2015-3130.
  42. Cavalieri A.V.G., Jordan P., Colonius T., Gervais Y. Axisymmetric superdirectivity in subsonic jets // J. Fluid Mech. 2012. V. 704. P. 388−420.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. (a) — Laval nozzle tested in [4]; (b) — calculated and (c) — non-calculated flow modes [4]; (d) — 3D model of the nozzle studied in the calculation.

Baixar (95KB)
3. Fig. 2. Section of the main computational grid (13 million cells) by the longitudinal plane of symmetry: (a) — full computational domain; (b) — zone near the nozzle.

Baixar (566KB)
4. Fig. 3. Location of FWH control surfaces.

Baixar (203KB)
5. Fig. 4. Location of observation points (microphones) in the far field: (a) — on an arc of a circle; (b) — in a set of azimuthal rings sweeping a cylindrical surface within the range –77 < x/D < 80.

Baixar (163KB)
6. Fig. 5. Flow structure in the plane of symmetry of the jet: (a) — instantaneous field of the longitudinal velocity component, (b) — instantaneous pressure field (the arrow shows the orientation of the normal to the front of the dominant sound waves).

Baixar (238KB)
7. Fig. 6. Distributions of the average value of the longitudinal velocity component: (a) — along the jet axis: 1 — calculation on a 6 million grid, 2 — calculation on a 13 million grid, 3 — measurement data [4], 4 — semi-empirical model [22]; (b) — radial profiles for different sections (1 – x/D = 4, 2 – x/D = 10): solid lines — calculation on a 13 million grid, dots and dashes — experiment [24].

Baixar (167KB)
8. Fig. 7. (a) — Distribution of normalized mean value (I) and root-mean-quadratic value of pulsations (II) of the longitudinal velocity component along the jet axis; (b) — normalized spectra of pulsations of the longitudinal velocity component at a point on the jet axis x = 2Lc. 1 — measurement data for M = 0.53 [25]; 2 — calculation for M = 0.53 [12], 3 — calculation for M = 2, carried out in the present work; 4 — “–5/3” law.

Baixar (146KB)
9. Fig. 8. Jet noise spectra at an angle of θ = 20° (red lines 1, 3, 5) and θ = 90° (blue lines 2, 4, 6): 1, 2 – experiment; 3, 4 – calculation on a grid of 6 million cells; 5, 6 – calculation on a grid of 13 million cells, the calculated noise spectra were obtained using the FWH2 control surface.

Baixar (99KB)
10. Fig. 9. Comparison of calculated and measured jet noise directions for different Strouhal numbers: (a) — St = 0.12; (b) — 0.18; (c) — 0.3; (d) — 0.5. Markers — experiment, lines — calculation.

Baixar (217KB)
11. Fig. 10. Directivity of azimuthal modes for (a) — St = 0.123 and (b) — St = 0.182. Markers — experiment [4], lines — calculation. 1 — mode, 2 — , 3 — , 4 — .

Baixar (193KB)
12. Fig. 11. Spatial-frequency map of the total jet noise for a cylindrical surface R/D = 26.6 and its cross-section lines for analyzing the spectra and directivities of noise. A description of the figure is given in the text.

Baixar (315KB)
13. Fig. 12. Spectra of the total noise (1) and individual azimuthal modes (2 — mode , 3 — sine and cosine modes , 4 — sine and cosine modes , 5 — mode ). (a) — x/D = –77; (b) — x/D = 7; (c) — x/D = 40. The vertical lines indicate the approximate boundary of frequencies correctly resolved in the calculation.

Baixar (137KB)
14. Fig. 13. 1 — Spectrum of pressure pulsations on the jet axis at x/D = 1.2; 2, 3 — noise spectra in the far field at x/D = –77 for modes n = 0 and n = 1, respectively. For each case, spectra with a frequency resolution of ΔSt = 0.023 (solid lines) and ΔSt = 0.003 (dashed line) are shown. The vertical lines mark the boundaries of the resonant enhancement of the n = 0 (red) and n = 1 (blue) modes, calculated for a jet with M = 2 based on the tangential discontinuity model [37].

Baixar (256KB)
15. Fig. 14. Normalized in accordance with (2) spectral densities of the noise power of jets in the lateral direction (θ = 90°): 1 — jet M = 2, experiment [4]; 2 — jet M = 2, calculation carried out in the present work (the vertical line indicates the approximate boundary of frequencies correctly resolved in the calculation); 3 — jet M = 0.53, experiment [40].

Baixar (151KB)
16. Fig. 15. Directivity of azimuthal modes for different Strouhal numbers: (a) — St = 0.116; (b) — St = 0.186; (c) — St = 0.3. 1 — mode n = 0, 2 — n = 1, 3 — n = 2, 4 — n = 3.

Baixar (136KB)
17. Fig. 16. Directivity of the axisymmetric mode at St = 0.3: (a) — on a linear scale; (b) — on a logarithmic scale. 1 — data from numerical modeling, 2 — calculation using the theory of instability waves [4].

Baixar (121KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024