Energy capabilities of some pentazole salts as components of model composite solid propellants
- Autores: Zyuzin I.N.1, Gudkova I.Y.1, Lempert D.B.1
-
Afiliações:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian academy of sciences
- Edição: Volume 44, Nº 2 (2025)
- Páginas: 54-62
- Seção: Combustion, explosion and shock waves
- URL: https://modernonco.orscience.ru/0207-401X/article/view/681126
- DOI: https://doi.org/10.31857/S0207401X25020056
- ID: 681126
Citar
Texto integral



Resumo
The energy capabilities of five pentazole salts as fillers for composite solid propellants (СSP) were studied. Of these, only hydroxylammonium pentazolate (IV) turned out to be a relatively good component for creating model СSPs. Compound IV is superior to HMX in terms of Ief(3) both in a binary composition with an active binder and in similar compositions with the addition of AP, ADN or Al. Lithium, ammonium, hydrazinium and 1,4,5-triaminotetrazolium pentazolates are inferior to HMX as the main filler for CSP.
Palavras-chave
Texto integral

Sobre autores
I. Zyuzin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian academy of sciences
Autor responsável pela correspondência
Email: zyuzin@icp.ac.ru
Rússia, Chernogolovka
I. Gudkova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian academy of sciences
Email: zyuzin@icp.ac.ru
Rússia, Chernogolovka
D. Lempert
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian academy of sciences
Email: zyuzin@icp.ac.ru
Rússia, Chernogolovka
Bibliografia
- I.Yu. Gudkova, I.N. Zyuzin, D.B. Lempert. Russ. J. Phys. Chem. B 14 (2), 302 (2020). https://doi.org/10.1134/S1990793120020062
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 14 (5), 804 (2020). https://doi.org/10.1134/S1990793120050140
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 15 (4), 611 (2021). https://doi.org/10.1134/S1990793121040138
- I.N. Zyuzin, V.M. Volochov, D.B. Lempert. Russ. J. Phys. Chem. B 15 (5), 810 (2021). https://doi.org/10.1134/S1990793121050109
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. J. Phys. Chem. B 16 (1), 58 (2022). https://doi.org/10.1134/S1990793122010067
- I.Yu. Gudkova, I.N. Zyuzin, D.B. Lempert. Russ. J. Phys. Chem. B 16 (5), 902 (2022). https://doi.org/10.1134/S1990793122050141
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 16 (6), 1117 (2022). https://doi.org/10.1134/S1990793122060240
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 17 (3), 710 (2023). https://doi.org/10.1134/S1990793123030156
- Gao H., Zhang Q., J.M. Shreeve. J. Mater. Chem. A 8, 4193 (2020). https://doi.org/10.1039/C9TA12704F
- Piao He, Jian-Guo Zhang, Xin Yin, Jin-Ting Wu, Le Wu, Zun-Ning Zhou, and Tong-Lai Zhang, Chem. A Eur. J. 22 7670 (2016). https://doi.org/10.1002/chem.201600257
- R.P. Singh, R.D. Verma, D.T. Meshri, J.M. Shreeve, Angew. Chem. Int. Ed. 45, 3584 (2006). https://doi.org/10.1002/anie.200504236
- Guanglei Li, Haifeng Huang, Jun Yang, and Hongzhen Duan. Chin. J. Org. Chem. 41, 1466 (2021). https://doi.org/10.6023/cjoc202009019
- Le Pei, Chang-peng Xie, PingYin. Energetic Materials Frontiers 2, 306 (2021). https://doi.org/10.1016/j.enmf.2021.11.003
- Jin-Ting Wu, Jin Xu, Wei Li, and Hong-Bo Li, Propellants, Explos., Pyrotech. 45, 536 (2020). https://doi.org/10.1002/prep.201900333
- V.P. Sinditskii, V.V. Serushkin, V.I. Kolesov. Propellants Explos. Pyrotech. 46, 1504. https://doi.org/10.1002/prep.202100173
- D. Fischer, T.M. Klapotke, D.G. Piercey, J. Stierstorfer. Chem. Eur. J. 19, 4602 (2013). https://doi.org/10.1002/chem.201203493
- N. Fischer, D. Fischer, T.M. Klapotke, D.G. Piercey, J. Stierstorfer. J. Mater. Chem. 22, 20418 (2012). https://doi.org/10.1039/C2JM33646D
- P. Yin, J. Zhang, L.A. Mitchell, D.A. Parrish, J.M. Shreeve. Angew. Chem. Int. Ed. 55, 12895 (2016). https://doi.org/10.1002/anie.201606894
- Y. Liu, G. Zhao, Y. Tang, J. Zhang, Lu Hu, G.H. Imler, D.A. Parrish, J.M. Shreeve. J. Mater. Chem. A 7, 7875 (2019). https://doi.org/10.1039/c9ta01717h
- C. Bian, W. Feng, Q. Lei, H. Huang, X. Li, J. Wang, C. Li, Z. Xiao. Dalton Trans. 49, 368 (2020). https://doi.org/10.1039/c9dt03829a
- L. Hu, P. Yin, G. Zhao, C. He, G.H. Imler, D.A. Parrish, H. Gao, J.M. Shreeve. J. Am. Chem. Soc. 140, 15001 (2018). https://doi.org/10.1021/jacs.8b09519
- A.A. Voronin, S.P. Balabanova, I.V. Fedyanin, A.M. Churakov, A.N. Pivkina, Yu.A. Strelenko, M.S. Klenov, V.A. Tartakovsky, Molecules 27, 6287 (2022). https://doi.org/10.3390/molecules27196287
- A.A. Voronin, I.V. Fedyanin, A.M. Churakov, A.N. Pivkina, N.V. Muravyev, Yu A. Strelenko, M.S. Klenov, D.B. Lempert, V.A. Tartakovsky. ACS Appl. Energy Mater. 3, 9401 (2020). https://doi.org/10.1021/acsaem.0c01769
- Chong Zhang, Chengguo Sun, Bingcheng Hu, Chuanming Yu, Ming Lu. Science 355, 374 (2017). https://doi.org/10.1126/science.aah3840
- Yuangang Xu, Qian Wang, Cheng Shen, Qiuhan Lin, Pengcheng Wang, Ming Lu. Nature 549, 78 (2017). https://doi.org/10.1038/nature23662
- Chen Yang, Chong Zhang, Zhansheng Zheng, Chao Jiang, Jun Luo, Yang Du Bingcheng Hu, Chengguo Sun, K.O. Christe. J. Am. Chem. Soc. 140, 16488 (2018). https://doi.org/10.1021/jacs.8b05106
- Yuangang Xu, Lili Tian, Dongxue Li, Pengcheng Wang, Ming Lu. J. Mater. Chem. A, 7, 12468 (2019). https://doi.org/10.1039/C9TA01077G
- Sicheng Liao, Zhiyu Zhou, Kangcai Wang, Yunhe Jin, Jin Luo, Tianlin Liu, Energetic Materials Frontiers 1, 172 (2020). https://doi.org/10.1016/j.enmf.2020.10.001
- Ru-jing Yu, Yu-ji Liu, Wei Huang, Yong-xing Tang. Energetic Materials Frontiers 4, 63 (2023). https://doi.org/10.1016/j.enmf.2022.05.002
- Yuangang Xu, Lujia Ding, Feng Yang, Dongxue Li, Pengcheng Wang, Qiuhan Lin, Ming Lu. Chem. Eng. J. 429, 132399 (2022). https://doi.org/10.1016/j.cej.2021.132399
- Pengcheng Wang, Yuangang Xu, Qiuhan Lin, Ming Lu. Chem. Soc. Rev. 47, 7522 (2018). https://doi.org/10.1039/C8CS00372F
- Yuyang Yao, Qiuhan Lin, Xinli Zhou, Ming Lu. FirePhysChem 1, 33 (2021). https://doi.org/10.1016/j.fpc.2021.02.001
- A.L. Vereshchagin. South Siberian Scientific Bulletin [in Russian], Iss. 2(48), 9 (2023). https://doi.org/10.25699/SSSB.2023.48.2.019
- D.B. Lempert. Chin. J. Explos. Propel. 38 (4), 1 (2015). https://doi.org/10.14077/j.issn.1007-7812.2015.04.001
- G.N. Nechiporenko D.B. Lempert. Khim. Fiz., 17 (10), 93 (1998).
- R. Meyer, J. Kohler, A. Homburg. Explosives, Wiley-VCH, Weinheim, 7th edn (2016).
- B.G. Trusov. Program System TERRA for Simulation Phase and Thermal Chemical Equilibrium, XIV Intern. Symp. on Chemical Thermodynamics, St-Petersburg, 483 (2002).
- G. Pavlovets, V. Tsutsuran. Physical and Chemical Properties of Powders and Rocket Propellants (Ministry of Defense, Moscow, 2009) [in Russian].
- D.B. Lempert, G.N. Nechiporenko, G.B. Manelis. Centr. Eur. J. Energ. Mater., 3 (4), 73 (2006).
- Xiang Chen, Chenguang Zhu, Bingcheng Hu, Chong Zhang, Propellants Explos. Pyrotech., 49, e202300141 (2024). https://doi.org/10.1002/prep.202300141
- D.B. Lempert, G. N. Nechiporenko, G.P. Dolganova. Khim. Fizika 17 (7), 87 (1998).
Arquivos suplementares
