Multiobject visualization of vast forests in virtual environment systems
- Authors: Timokhin P.Y.1, Mikhaylyuk M.V.1
-
Affiliations:
- Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”
- Issue: No 3 (2025)
- Pages: 102–113
- Section: COMPUTER GRAFICS AND VISUALIZATION
- URL: https://modernonco.orscience.ru/0132-3474/article/view/688127
- DOI: https://doi.org/10.31857/S0132347425030093
- EDN: https://elibrary.ru/GROMZA
- ID: 688127
Cite item
Abstract
This paper discusses the task of rendering vast woodlands in virtual environment systems using point clouds and hardware-accelerated ray tracing. A new approach is proposed, which represents the forest area as a multiobject comprising point cloud of a reference tree and a set of distinctive features of its instances. A developed method for deploying such a multiobject into a virtual forest on the ray tracing pipeline is described, which includes constructing bounding boxes of the reference tree, specifying geometric and color transformations for tree instances, and synthesizing images of these instances. Based on the proposed method, a software implementation (C++, GLSL, Vulkan) was created and tested on a number of detailed point clouds of real trees (deciduous and evergreen). The results of the testing confirmed the possibility to synthesize images of unique vast woodlands (of several million trees) in real time both from a bird's-eye view and from a pedestrian's point of view. The proposed solution has a wide range of applications: virtual environment systems, video simulators, scientific visualization, geoinformation systems, educational applications, etc.
Full Text

About the authors
P. Y. Timokhin
Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”
Author for correspondence.
Email: p_tim@bk.ru
ORCID iD: 0000-0002-0718-1436
Russian Federation, 117218 Moscow, Nakhimovskii pr. 36/1
M. V. Mikhaylyuk
Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”
Email: mix@niisi.ras.ru
ORCID iD: 0000-0002-7793-080X
Russian Federation, 117218 Moscow, Nakhimovskii pr. 36/1
References
- Mikhaylyuk M.V., Kononov D.A., Loginov D.M. Modeling Situations in Virtual Environment Systems // Proceedings of the 23rd Conference on Scientific Services & Internet. 2021. V. 3066. P. 173–181. https://doi.org/10.20948/abrau-2021-6s-ceur
- Song Y., Naji S., Kaufmann E., Loquercio A., Scaramuzza D. Flightmare: A Flexible Quadrotor Simulator // ArXiv, abs/2009.00563. 2020. https://doi.org/10.5167/uzh-193792
- Maltsev A.V. Integration of Physical Reality Objects with Their 3D Models Visualized in Virtual Environment Systems // Scientific Visualization. 2024. V. 16. No. 2. P. 97–105. https://doi.org/10.26583/sv.16.2.08
- Страшнов Е.В., Мироненко И.Н., Финагин Л.А. Моделирование режимов полета квадрокоптера в системах виртуального окружения // Информационные технологии и вычислительные системы. 2020. № 1. C. 85–94. https://doi.org/10.14357/20718632200109
- You J., Huai Y., Nie X., Chen Y. Real-Time 3D Visualization of Forest Fire Spread Based on Tree Morphology and Finite State Machine // Computers & Graphics. 2022. V. 103. P. 109–120. https://doi.org/10.1016/j.cag.2022.01.009
- Holm S., Schweier J. Virtual forests for decision support and stakeholder communication // Environmental Modelling and Software. 2024. V. 180. Article 106159. https://doi.org/10.1016/j.envsoft.2024.106159
- Zürcher R., Zhao J., Lau Sarmiento A., Brede B., Klippel A. Advancing Forest Monitoring and Assessment Through Immersive Virtual Reality // Proceedings of the 26th AGILE Conference on Geographic Information Science. 2023. V. 4. Article 15. https://doi.org/10.5194/agile-giss-4-15-2023
- Huang J., Lucash M.S., Scheller R.M., Klippel A. Walking through the forests of the future: using data-driven virtual reality to visualize forests under climate change // International Journal of Geographical Information Science. 2020. V. 35. No. 6. P. 1155–1178. https://doi.org/10.1080/13658816.2020.1830997
- Thuvander L., Somanath S., Hollberg A. Procedural Digital Twin Generation for Co-Creating in VR Focusing on Vegetation // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2022. V. XLVIII-4/W5-2022. P. 189–196. https://doi.org/10.5194/isprs-archives-XLVIII-4-W5-2022-189-2022
- Murtiyoso A., Holm S., Riihimäki H., Krucher A., Griess H., Griess V.C., Schweier J. Virtual forests: a review on emerging questions in the use and application of 3D data in forestry // International Journal of Forest Engineering. 2023. V. 35. No. 1. P. 29–42. https://doi.org/10.1080/14942119.2023.2217065
- Rusch M., Bickford N., Subtil N. Introduction to vulkan ray tracing // Ray Tracing Gems II. NVIDIA. 2021. P. 213–255. https://doi.org/10.1007/978-1-4842-7185-8_16
- Newlands C., Zauner K. Procedural Generation and Rendering of Realistic, Navigable Forest Environments: An Open-Source Tool // ArXiv, abs/2208.01471. 2022. P. 1–14. https://doi.org/10.48550/arXiv.2208.01471
- Lieb S., Klee N., Lawonn K. Clasping Trees – A Pipeline for Interactive Procedural Tree Generation // International Symposium on Vision, Modeling, and Visualization. 2022. P. 49–56. https://doi.org/10.2312/vmv.20221203
- Bao G., Meng W., Li H., Liu J., Zhang X. Hardware instancing for real-time realistic forest rendering // SIGGRAPH Asia 2011 Sketches (SA ’11). 2011. Article 16. P. 1–2. https://doi.org/10.1145/2077378.2077398
- Decaudin P., Neyret F. Volumetric billboards // Computer Graphics Forum. 2009. V. 28. No. 8. P. 2079–2089. https://doi.org/10.1111/j.1467-8659.2009.01354.x
- Decaudin P., Neyret F. Rendering Forest Scenes in Real-Time // EGSR04: 15th Eurographics Symposium on Rendering. 2004. P. 93–102. https://doi.org/10.2312/EGWR/EGSR04/093-102
- Fuhrmann A.L., Umlauf E., Mantler S. Extreme Model Simplification for Forest Rendering // Eurographics Workshop on Natural Phenomena. 2005. P. 57–66. https://doi.org/10.2312/NPH/NPH05/057-066
- Zhang Y., Teboul O., Zhang X., Deng Q. Image Based Real-Time and Realistic Forest Rendering and Forest Growth Simulation // 2006 Second International Symposium on Plant Growth Modeling and Applications. 2006. P. 323–327. https://doi.org/10.1109/PMA.2006.44
- Laferté J.-M., Daussin G., Flifla J., Haigron P. Real-time Forest Simulation for a Flight Simulator using a GPU // 2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications. 2008. P. 1–7. https://doi.org/10.1109/ICTTA.2008.4530097
- Guerrero P. Rendering of Forest Scenes // Technical University of Vienna. 2006. P. 1–9. https://www.cg.tuwien.ac.at/research/publications/2006/G_P_06_RFS/G_P_06_RFS-Report.pdf
- Bao G., Li H., Zhang X., Che W., Jaeger M. Realistic real-time rendering for large-scale forest scenes // IEEE International Symposium on VR Innovation. 2011. P. 217–223. https://doi.org/10.1109/ISVRI.2011.5759637
- Candussi A., Candussi N., Höllerer T. Rendering Realistic Trees and Forests in Real Time // Eurographics’05. 2005. P. 73–76. https://doi.org/10.2312/egs.20051027
- Szijártó G., Koloszár J. Real-time Hardware Accelerated Rendering of Forests at Human Scale // Journal of WSCG. 2004. V. 12. No. 1–3. P. 443–450. http://wscg.zcu.cz/wscg2004/Papers_2004_Full/N23.pdf
- Kohek Š., Strnad D. Interactive Large‐Scale Procedural Forest Construction and Visualization Based on Particle Flow Simulation // Computer Graphics Forum. 2018. V. 37. No. 1. P. 389–402. https://doi.org/10.1111/cgf.13304
- Neubert B., Franken T., Deussen O. Approximate Image-Based Tree-Modeling using Particle Flows // ACM Transactions on Graphics (TOG). 2007. V. 26. No. 3. P. 88. https://doi.org/10.1145/1275808.1276487
- Rodkaew Y., Chongstitvatana P., Siripant S., Lursinsap P. Particle Systems for Plant Modeling // 2003’ International Symposium on Plant Growth Modeling, Simulation, Visualization and their Applications (PMA03). 2003. P. 210–217. https://www.cp.eng.chula.ac.th/~prabhas/paper/ 2003/Particle_Systems_for_Plant_Modeling.pdf
- Runions A., Lane B., Prusinkiewicz P. Modeling Trees with a Space Colonization Algorithm // Eurographics Workshop on Natural Phenomena. 2007. P. 63–70. https://doi.org/10.2312/NPH/NPH07/063-070
- Zhang X., Bao G., Meng W., Jaeger M., Li H., Deussen O., Chen B. Tree Branch Level of Detail Models for Forest Navigation // Computer Graphics Forum. 2017. V. 36. No. 8. P. 402–417. https://doi.org/10.1111/cgf.13088
- Prusinkiewicz P., Lindenmayer A. The Algorithmic Beauty of Plants // Springer Science & Business Media. 1990–2012. P. 228. https://doi.org/10.1007/978-1-4613-8476-2
- Wang G., Zhang D., Zhou K., Jia J. Rule and Reuse Based Lightweight Modeling and Real Time Web3D Rendering of Forest Scenes // Proceedings of the 23rd International ACM Conference on 3D Web Technology. 2018. No. 8. P. 1–8. https://doi.org/10.1145/3208806.3208819
- Nuić H., Mihajlović Ž. Algorithms for procedural generation and display of trees // Proceedings of the 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). 2019. P. 230–235. https://doi.org/10.23919/MIPRO.2019.8757140
- Garifullin A., Shcherbakov A., Frolov V. Fitting Parameters for Procedural Plant Generation // WSCG 2022 Proceedings, Computer Science Research Notes. 2022. V. 3201. P. 282–288. https://doi.org/10.24132/csrn.3201.35
- Kohek Š., Lukač N., Strnad D., Kolingerová I., Žalik B. Data on annotated approximate bilaterally symmetric leaf-off trees based on particle flow simulation and predefined tree crown shape // Data in Brief. 2022. V. 40. P. 1–5. https://doi.org/10.1016/j.dib.2022.107806
- Garifullin A., Frolov V.A., Khlupina A.A. Approximate Instancing for Modeling Plant Ecosystems // Proceedings of the 31th International Conference on Computer Graphics and Vision (CEUR Workshop Proceedings). 2021. V. 3027. P. 95–104. https://doi.org/10.20948/graphicon-2021-3027-95-104
- Strnad D., Kohek Š., Nerat A., Žalik B. Efficient Representation of Geometric Tree Models with Level-of-Detail Using Compressed 3D Chain Code // IEEE Transactions on Visualization and Computer Graphics. 2020. V. 26. No. 11. P. 3177–3188. https://doi.org/10.1109/TVCG.2019.2924430
- Gilet G., Meyer A., Neyret F. Point-based Rendering of Trees // Eurographics Workshop on Natural Phenomena. 2005. P. 67–72. http://evasion.imag.fr/Publications/2005/GMN05/paper1020.pdf
- TLS trees – A 3D model collection by kungphil // Sketchfab. https://skfb.ly/oDOZB
- Livny Y., Yan F., Olson M., Chen B., Zhang H., El-Sana J. Automatic reconstruction of tree skeletal structures from point clouds // SIGGRAPH ASIA ‘10: ACM SIGGRAPH Asia 2010 papers. 2010. Article No. 151. P. 1–8. https://doi.org/10.1145/1866158.1866177
- Du S., Lindenbergh R.C., Ledoux H., Stoter J.E., Nan L. AdTree: Accurate, Detailed, and Automatic Modelling of Laser-Scanned Trees // Remote Sensing. 2019. V. 11. No. 18. P. 2074. https://doi.org/10.3390/rs11182074
- Yanchao L., Guo J., Benes B., Deussen O., Zhang X., Huang H. TreePartNet: neural decomposition of point clouds for 3D tree reconstruction // ACM Transactions on Graphics (TOG). 2021. V. 40. No. 6. Article No. 232. P. 1–16. https://doi.org/10.1145/3478513.3480486
- Bornand A., Abegg M., Morsdorf F., Rehush N. Completing 3D point clouds of individual trees using deep learning // Methods in Ecology and Evolution. 2024. V. 15. No. 11. P. 2010–2023. https://doi.org/10.1111/2041-210x.14412
- Lefrançois M.-K. Ray tracing instances // NVIDIA DesignWorks. Vulkan Ray Tracing Tutorials. 2020–2024. https://github.com/nvpro-samples/vk_raytracing_tutorial_KHR/tree/master/ray_tracing_instances
- Смирнов Л.М., Фролов В.А., Волобой А.Г. Анализ производительности методов обхода двухуровневых BVH-деревьев в трассировке лучей на графических процессорах // GraphiСon 2024: материалы 34-й Международной конференции по компьютерной графике и машинному зрению (Россия, Омск, 17–19 сентября 2024 г.). 2024. C. 147–163. https://doi.org/10.25206/978-5-8149-3873-2-2024-147-163
- Тимохин П.Ю., Михайлюк М.В. Метод упорядочивания облаков точек для визуализации на конвейере трассировки лучей // Программирование. 2024. № 3. С. 42–53. https://doi.org/10.31857/S0132347424030054
- Lefrançois M.-K. Ray tracing intersection // NVIDIA DesignWorks. Vulkan Ray Tracing Tutorials. 2020–2023. https://github.com/nvpro-samples/vk_raytracing_tutorial_KHR/tree/master/ray_tracing_intersection
- Lengyel E. Mathematics for 3D Game Programming and Computer Graphics (Third Edition). Boston, MA: Course Technology PTR, 2012. 624 p.
- Resource Creation. Buffers // Vulkan 1.3.290 – A Specification (with all ratified extensions). The Khronos Vulkan Working Group. 2024. https://registry.khronos.org/vulkan/specs/ 1.3-khr-extensions/pdf/vkspec.pdf
- Pseudo-random number generation: std::mersenne_twister_engine, std::normal_distribution // C++ reference. Numerics library. 2024. https://en.cppreference.com/w/cpp/numeric/random
- CloudCompare. 3D point cloud and mesh processing software. http://www.cloudcompare.org/
Supplementary files
