Спиновое состояние pH-чувствительного комплекса кобальта(II) с лигандом на основе бис-(пиразол-3-ил)пиридина
- Авторы: Сафиуллина Э.С.1,2, Никовский И.А.1, Нелюбина Ю.В.1
-
Учреждения:
- Институт элементоорганических соединений им. А.Н. Несмеянова РАН
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Выпуск: Том 51, № 9 (2025)
- Страницы: 590-600
- Раздел: Статьи
- URL: https://modernonco.orscience.ru/0132-344X/article/view/690917
- DOI: https://doi.org/10.31857/S0132344X25090059
- EDN: https://elibrary.ru/lipapo
- ID: 690917
Цитировать
Полный текст



Аннотация
При взаимодействии 2,6-бис(пиразол-3-ил)пиридина (L), содержащего способные к депронированию гидроксигруппы, с гексагидратом перхлората кобальта(II) в дейтерометаноле в ампуле для спектроскопии ЯМР получен новый комплекс кобальта(II) [Co(L)2](ClO4)2 и продемонстрирована возможность его in situ обратимого депротонирования под действием 1,8-диазабицикло[5.4.0]ундец-7-ена. С помощью подхода, основанного на анализе изменения химических сдвигов в спектрах ЯМР 1H с температурой, установлено, что полученный комплекс находится в высокоспиновом состоянии как до, так и после полного депротонирования в диапазоне температур 200–325 К. Данные рентгеноструктурного анализа полностью депротонированного комплекса [Co(L-2H)2](DBU + H)2 (CCDC № 2448321) указывают на сохранение им высокоспинового состояния и в кристалле.
Об авторах
Э. С. Сафиуллина
Институт элементоорганических соединений им. А.Н. Несмеянова РАН; Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: yulia.v.nelyubina@gmail.com
Москва, Россия; Москва, Россия
И. А. Никовский
Институт элементоорганических соединений им. А.Н. Несмеянова РАН
Автор, ответственный за переписку.
Email: yulia.v.nelyubina@gmail.com
Москва, Россия
Ю. В. Нелюбина
Институт элементоорганических соединений им. А.Н. Несмеянова РАН
Email: yulia.v.nelyubina@gmail.com
Москва, Россия
Список литературы
- Halcrow M.A. Spin-Crossover Materials: Properties and Applications. Oxford (UK): Wiley, 2013.
- Khusniyarov M.M. // Chem. Eur. J. 2016. V. 22. № 43. P. 15178.
- Kumar K.S., Ruben M. // Coord. Chem. Rev. 2017. V. 346. P. 176.
- Tsitovich P.B., Cox J.M., Benedict J.B., Morrow J.R. // Inorg. Chem. 2016. V. 55. № 2. P. 700.
- Jeon I.-R., Park J. G., Haney C. R. et al. // Chem. Sci. 2014. V. 5. P. 2461.
- Ohba M., Yoneda K., Agustí G. et al. // Angew. Chem. Int. Ed. 2009. V. 48. № 26. P. 4767.
- Gaudette A.I., Thorarinsdottir A.E., Harris T.D. // Chem. Commun. 2017. V. 53. № 96. P. 12962.
- Enamullah M., Linert W., Gutmann V. et al. // Monatsh. Chem. 1994. V. 125. № 12. P. 1301.
- Nowak R., Prasetyanto E.A., De Cola L. et al. // Chem. Commun. 2017. V. 53. № 5. P. 971.
- Dhers S., Mondal A., Aguilà D. et al. // J. Am. Chem. Soc. 2018. V. 140. № 26. P. 8218.
- Enamullah M., Linert W. // J. Coord. Chem. 1995. V. 35. № 3–4. P. 325.
- Seredyuk M., Znovjyak K.O., Kusz J. et al. // Dalton Trans. 2014. V. 43. № 43. P. 16387.
- Seredyuk M., Pineiro-Lopez L., Muñoz M.C. et al. // Inorg. Chem. 2015. V. 54. № 15. Р. 7424–7432.
- Luo Y.H., Nihei M., Wen G.J. et al. // Inorg. Chem. 2016. V. 55. № 16. P. 8147.
- Shiga T., Saiki R., Akiyama L. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 17. P. 5658.
- Rabelo R., Toma L., Moliner N. et al. // Chem. Sci. 2023. V. 14. № 33. P. 8850.
- Zhao J., Peng Q., Wang Z. et al. // Nat. Commun. 2019. V. 10. № 1. P. 2303.
- Holland J.M., Kilner C.A., Thornton-Pett M., Halcrow, M.A. // Polyhedron. 2001. V. 20. № 22–23. P. 2829.
- Kershaw Cook L.J., Halcrow M.A. // Magnetochemistry. 2015. V. 1. № 1. P. 3.
- Pavlov A.A., Denisov G.L., Kiskin M.A. et al. // Inorg. Chem. 2017. V. 56. № 24. P. 14759.
- Hasserodt J., Kolanowski J.L., Touti F. // Angew Chem. Int. Ed. 2014. V. 53. № 1. P. 60.
- Halcrow M A. // Coord. Chem. Rev. 2005. V. 249. № 25. P. 2880.
- Aleshin D.Y., Nikovskiy I., Novikov V.V. et al. // ACS omega. 2021. V. 6. № 48. P. 33111.
- Nikovskiy I.A., Polezhaev A.V., Novikov V.V. et al. // Chem. Eur. J. 2020. V. 26. P. 5629.
- Melnikova E.K., Aleshin D.Y., Nikovskiy I.A. et al. // Crystals. 2020. V. 10. № 9. P. 793.
- Nikovskiy I.A., Polezhaev A.V., Novikov V.V. et al. // Crystals. 2021. V. 11. № 8. P. 922.
- Pavlov A.A., Belov A.S., Savkina S.A. et al. //Russ. J. Coord. Chem. 2018. V. 44. P. 489.
- Pavlov A.A., Nikovskii I.A., Polezhaev A.V. et al. //Russ. J. Coord. Chem. 2019. V. 45. P. 402.
- Pankratova Y., Aleshin D., Nikovskiy I. et al. // Inorg. Chem. 2020. V. 59. № 11. P. 7700.
- Halcrow M.A. // Crystals. 2016. V. 6. № 5. P. 58.
- Creutz S.E., Peters J.C. // Inorg. Chem. 2016. V. 55. № 8. P. 3894.
- Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- Weber B., Walker F.A. // Inorganic chemistry. 2007. V. 46. №. 16. P. 6794.
- Alvarez S. // Chem. Rev. 2015. T. 115. C. 13447.
- Kershaw Cook L., Mohammed R., Sherborne G. et al. // Coord. Chem. Rev. 2015. V. 289–290. P. 2.
Дополнительные файлы
