Низкотемпературные композитные сорбенты CO2 на основе аминосодержащих соединений (обзор)
- Авторы: Шешковас А.Ж.1,2, Веселовская Ж.В.1, Селищев Д.С.1, Козлов Д.В.1
-
Учреждения:
- Институт катализа им . Г . К . Борескова СО РАН
- Новосибирский государственный университет
- Выпуск: Том 96, № 3 (2023)
- Страницы: 226-244
- Раздел: Статьи
- URL: https://modernonco.orscience.ru/0044-4618/article/view/668165
- DOI: https://doi.org/10.31857/S0044461823030015
- EDN: https://elibrary.ru/PCCDWQ
- ID: 668165
Цитировать
Аннотация
Использование технологий, основанных на сжигании ископаемого углеродсодержащего топлива, обусловливает поступление в атмосферу большого количества CO2, являющегося одним из основных парниковых газов. В целях снижения уровня CO2 в атмосфере разрабатываются системы для его сорбционного улавливания из различных газовых источников. Наибольший интерес представляют сорбционные системы, позволяющие проводить процессы сорбции и десорбции CO2 в области низких температур (25-200ºС). Чаще всего такие системы представляют собой композитные материалы, состоящие из пористого носителя и диспергированного на нем хемосорбента CO2. Среди органических хемосорбентов наиболее перспективными являются низколетучие аминосодержащие соединения. Рассмотрена классификация аминосодержащих композитных сорбентов по методу их приготовления: пропиткой, ковалентной прививкой, in situ полимеризацией на поверхности носителя. Метод пропитки отличается простотой и низкой себестоимостью реализации. Сорбционные характеристики материалов, полученных методом пропитки, зависят от эффективности диспергирования активного компонента, определяющейся характеристиками пористой структуры носителя, в частности способностью последней к химическому или электростатическому взаимодействию с нанесенным аминосодержащим соединением. Метод ковалентной прививки основан на закреплении алкоксиаминосиланов на поверхности кремнеземных пористых материалов. Для реализации этого метода используются носители с высоким содержанием силанольных групп на поверхности и с размером пор, достаточным для обеспечения эффективного транспорта молекул CO2 к аминогруппам. Основным недостатком метода прививки является малая толщина получаемых слоев аминосодержащего компонента. In situ полимеризация используется для получения материалов с высоким содержанием привитых функциональных групп. При соблюдении условий, позволяющих исключить блокировку пор носителя, материалы этого типа демонстрируют самую высокую сорбционную емкость по CO2.
Ключевые слова
Об авторах
А. Ж. Шешковас
Институт катализа им . Г . К . Борескова СО РАН;Новосибирский государственный университет
Email: acjournal.nauka.nw@yandex.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia
Ж. В. Веселовская
Институт катализа им . Г . К . Борескова СО РАН
Email: acjournal.nauka.nw@yandex.ru
630090, Novosibirsk, Russia
Д. С. Селищев
Институт катализа им . Г . К . Борескова СО РАН
Email: acjournal.nauka.nw@yandex.ru
630090, Novosibirsk, Russia
Д. В. Козлов
Институт катализа им . Г . К . Борескова СО РАН
Автор, ответственный за переписку.
Email: acjournal.nauka.nw@yandex.ru
630090, Novosibirsk, Russia
Список литературы
- Madejski P., Chmiel K., Subramanian N., Kuś T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies // Energies 2022. V. 15. N 3. ID 887. https://doi.org/10.3390/en15030887
- Оковитая К. О., Суржко О. А. Аналитический обзор получения и использования биогаза // Инж. вестник Дона. 2017. № 4. http://www.ivdon.ru/ru/magazine/ archive/n4y2017/4618
- Yaumi A. L., Bakar M. A., Hameed B. H. Recent advances in functionalized composite solid materials for carbon dioxide capture // Energy. 2017. V. 124. P. 461- 480. https://doi.org/10.1016/j.energy.2017.02.053
- Leuenberger M., Nyfeler P., Moret H. P., Sturm P., Indermühle A., Schwander J. CO2 concentration measurements on air samples by mass spectrometry // Rapid Commun. Mass. Spectrom. 2000. V. 14. N 16. P. 1552-1557. https://doi.org/10.1002/1097- 0231(20000830)14:16%3C1552::AID- RCM63%3E3.0.CO;2-C
- Wernera A., Beharb F., de Hemptinnea J. C., Behara E. Viscosity and phase behaviour of petroleum fluids with high asphaltene contents // Fluid Phase Equilib. 1998. V. 147. N 1-2. P. 343-356. https://doi.org/10.1016/S0378-3812(98)00245-3
- Raventos M., Duarte S., Alarcon R. Application and possibilities of supercritical CO2 extraction in food processing industry: An Overview // Food Sci. Tech.Int. 2002. V. 8. N 5. P. 269-284. https://doi.org/10.1106/108201302029451
- Mazzotti M., Abanades J. C., Allam R., Lackner K. S., Meunier F., Rubin E., Sanchez J. C., Yogo K., Zevenhoven R. Mineral carbonation and industrial uses of carbon dioxide // IPCC special report on carbon dioxide capture and storage. Cambridge University Press, 2005. P. 321-337.
- Минигулов Ф. Г., Пресняков В. В., Шигабутдинов А. К., Сафин Д. Х., Пресняков А. В., Валитов А. Р., Сафин А. Ф. Некоторые особенности экологически безопасной "бесфосгенной" технологии производства поликарбонатов // Пласт. массы. 2020. Т. 5-6. С. 45-47. https://doi.org/10.35164/0554-2901-2020-5-6-45-47
- Girotto S., Minetto S., Neksa P.Commercial refrigeration system using CO2 as the refrigerant // Int. J. Refrig. 2004. V. 27. N 7. P. 717-723. https://doi.org/10.1016/j.ijrefrig.2004.07.004
- Osborne C. P., Beerling D. J. Sensitivity of tree growth to a high CO2 environment: Consequences for interpreting the characteristics of fossil woods from ancient "greenhouse" worlds Palaeogeography, Palaeoclimatology // Palaeoecology. 2002. V. 182. N 1-2. P. 15-29. https://doi.org/10.1016/S0031-0182(01)00450-3
- Woodward F. I. Potential impacts of global elevated CO2 concentrations on plants: A Review // Curr. Opin. Plant Biol. 2002. V. 5. N 3. P. 207-211. https://doi.org/10.1016/S1369-5266(02)00253-4
- Centi G., Quadrelli E. A., Perathoner S. Catalysis for CO2 conversion: A Key technology for rapid introduction of renewable еnergy in the value chain of chemical industries // Energy Environ. Sci. 2013. V. 6. P. 1711-1731. https://doi.org/10.1039/C3EE00056G
- Saeidi S., Najari S., Fazlollahi F., Nikoo M. K., Sefidkon F., Klemes J. J., Baxter L. L. Mechanisms and kinetics of CO2 hydrogenation to value-added products: A Detailed review on current status and future trends // Renew. Sust. Energy Rev. 2017. V. 80. P. 1292-1311. https://doi.org/10.1016/j.rser.2017.05.204
- Koytsoumpa E. I., Bergins C., Kakaras E. The CO2 economy: Review of CO2 capture and reuse technologies //j. Supercrit. Fluids. 2018. 132. P. 3-16. https://doi.org/10.1016/j.supflu.2017.07.029
- Tursunov O., Kustov L., Kustov A. A Brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts // Oil Gas Sci. Technol. - Rev. dʹIFP Energies Nouvelles. 2017. V. 72. ID 30. https://doi.org/10.2516/ogst/2017027
- Кузьмин А. В., Шаинян Б. А. Механизмы реакций каталитического электрохимического восстановления кислорода (ORR) и углекислого газа (CO2RR) // Успехи химии. 2023. Т. 92. № 6. ID 5085. https://doi.org/10.59761/RCR5085
- Wang J., Huang L., Yang R., Zhang Z., Wu J., Gao Y., Wang Q., OʹHare D., Zhong Z. Recent advances in solid sorbents for CO2 capture and new development trends // Energy Environ. Sci. 2014. V. 7. N 11. P. 3478-3518. https://doi.org/10.1039/C4EE01647E
- Sanz-Perez E. S., Murdock C. R., Didas S. A., Jones C. W. Direct capture of CO2 from ambient air // Chem. Rev. 2016. V. 116. N 19. P. 11840-11876. https://doi.org/10.1021/acs.chemrev.6b00173
- Shi X., Xiao H., Azarabadi H., Song J., Wu X., Chen X., Lackner K. S. Sorbents for the direct capture of CO2 from ambient air // Angew. Chem.Int. Ed. 2020. V. 59. N 18. P. 6984-7006. https://doi.org/10.1002/anie.201906756
- Park Y., Lin K. Y. A., Park A. H. A., Petit C. Recent advances in anhydrous solvents for CO2 capture: Ionic liquids, switchable solvents, and nanoparticle organic hybrid materials //Frontiers in Energy Research. 2015. V. 3. ID 42. https://doi.org/10.3389/fenrg.2015.00042
- Meng F., Meng Y., Ju T., Han S., Lin L., Jiang J. Research progress of aqueous amine solution for CO2 capture: A Review // Renew. Sust. Energy Rev. 2022. V. 168. ID 112902. https://doi.org/10.1016/j.rser.2022.112902
- Черникова Е. А., Глухов Л. М., Кустов Л. М., Красовский В. Г., Белецкая И. П. Мезо- и макропористые материалы, модифицированные аминами, для хранения CO2 // ЖОрХ. 2014. Т. 50. № 11. С. 1572-1573. https://www.elibrary.ru/sxtwmz
- Черникова Е. А., Глухов Л. М., Кустов Л. М., Красовский В. Г. Адсорбенты CO2 на основе пористых материалов, модифицированных аминами // Изв. АН. Сер. хим. 2015. № 12. С. 2958-2962. https://www.elibrary.ru/vceued
- Lee S. C., Kim J. C. Dry potassium-based sorbents for CO2 capture // Catalysis Surveys from Asia. 2007. V. 11. P. 171-185. https://doi.org/10.1007/s10563-007-9035-z
- Zhao C. Chen X., Anthony E. J., Jiang X., Duan L., Wu Y., Dong W., Zhao C. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent // Prog. Energy Combust. Sci. 2013. V. 39. N 6. P. 515-534. https://doi.org/10.1016/j.pecs.2013.05.001
- Gao W., Zhou T., Gao Y., Louis B., OʹHare D., Wang Q. Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: A Review //j. Energy Chem. 2017. V. 26. N 5. P. 830-838. https://doi.org/10.1016/j.jechem.2017.06.005
- Hu Y., Guo Y., Sun J., Li H., Liu W. Progress in MgO sorbents for cyclic CO2 capture: A Comprehensive review //j. Mater. Chem. A. 2019. V. 7. N 35. P. 20103-20120. https://doi.org/10.1039/C9TA06930E
- Ruhaimi A. H., Aziz M. A. A., Jalil A. A. Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities //j. CO2 Util. 2021. V. 43. ID 101357. https://doi.org/10.1016/j.jcou.2020.101357
- Портякова И. С., Антипов А. В., Мишин И. В., Кустов Л. М. Адсорбенты SO2, нанесенные на карбид кремния // ЖФХ. 2020. Т. 94. № 7. С. 1105-1113. https://doi.org/10.31857/S0044453720070237
- Sun H., Wu C., Shen B., Zhang X., Zhang Y., Huang J. Progress in the development and application of CaO-based adsorbents for CO2 capture - a review // Mater. Today Sust. 2018. V. 1-2. P. 1-27. https://doi.org/10.1016/j.mtsust.2018.08.001
- Kierzkowska A. M., Pacciani R., Müller C. R. CaO- based CO2 sorbents: From fundamentals to the development of new, highly effective materials // ChemSusChem. 2013. V. 6. N 7. P. 1130-1148. https://doi.org/10.1002/cssc.201300178
- Wang Y., Memon M. Z., Seelro M. A., F W., Gao Y., Dong Y., Ji G. A Review of CO2 sorbents for promoting hydrogen production in the sorption- enhanced steam reforming process // Int. J. Hydrogen Energy. 2021. V. 46. N 45. P. 23358-23379. https://doi.org/10.1016/j.ijhydene.2021.01.206
- Грейш А. А., Кустов А. Л., Соколовский П. В. Наноразмерные адсорбенты диоксида углерода // ЖФХ. 2021. Т. 95. № 8. С. 1232-1236. https://doi.org/10.31857/S0044453721080112
- Okunev A. G., Sharonov V. E., Aristov Y. I., Parmon V. N. Sorption of carbon dioxide from wet gases by K2CO3-in-porous matrix: Influence of the matrix nature // React. Kinet. Catal. Lett. 2000. V. 71. P. 355-362. https://doi.org/10.1023/A:1010395630719
- Park Y. C., Jo S. H., Kim J. Y., Won Y., Nam H., Yi C. K., Eom T. H., Lee J. B. Carbon dioxide capture from a real coal-fired flue gas using K-based solid sorbents in a 0.5 MWe-scale test-bed facility // Int. J. Greenh. Gas Control. 2020. V. 103. P. 103192. https://doi.org/10.1016/j.ijggc.2020.103192
- Kim K., Yang S., Lee J. B., Eom T. H., Ryu C. K., Lee H. J., Bae T. S., Lee S. J. A Long-term test of a new CO2 sorbent (KEP-CO2P2) in a 0.5 MWe CO2 capture test bed // Korean J. Chem. Eng. 2015. V. 32. P. 677-684. https://doi.org/10.1007/s11814-014-0297-7
- Park Y. C., Jo S. H., Ryu C. K., Yi C. K. Demonstration of pilot scale carbon dioxide capture system using dry regenerable sorbents to the real coal-fired power plant in Korea // Energy Procedia. 2011. V. 4. P. 1508-1512. https://doi.org/10.1016/j.egypro.2011.02.018
- Park Y. C., Jo S. H., Lee D. H., Yi C. K., Ryu C. K., Kim K. S., You C. H., Park K. S. The status of the development project for the 10 MWe-scale dry-sorbent carbon dioxide capture system to the real coal-fired power plant in Korea // Energy Procedia. 2013. V. 37. P. 122-126. https://doi.org/10.1016/j.egypro.2013.05.092
- Park Y. C., Jo S. H., Kyung D. H., Kim J. Y., Yi C. K., Ryu C. K., Shin M. S. Test operation results of the 10 MWe-scale dry-sorbent CO2 capture process integrated with a real coal-fired power plant in Korea // Energy Procedia. 2014. V. 63. P. 2261-2265. https://doi.org/10.1016/j.egypro.2014.11.245
- Won Y., Kim J. Y., Park Y. C., Yi C. K., Nam H., Woo J. M., Jin G. T., Park J., Lee S. Y., Jo S. H. Post- combustion CO2 capture process in a circulated fluidized bed reactor using 200 kg potassium-based sorbent: The Optimization of regeneration condition // Energy. 2020. V. 208. P. 118188. https://doi.org/10.1016/j.energy.2020.118188
- Luo P. C., Zhang Z. B., Jiao Z., Wang Z. X. Investigation in the design of a CO2 cleaner system by using aqueous solutions of monoethanolamine and diethanolamine // Ind. Eng. Chem. Res. 2003. V. 42. P. 4861-4866. https://doi.org/10.1021/ie030029m
- Wallace J., Krumdieck S. Carbon dioxide scrubbing from air for alkaline fuel cells using amine solution in a packed bubble column // Proc. Inst. Mech. Eng. Sci. Part C: J. Mech. Eng. Sci. 2005. V. 219. P. 1225-1233. https://doi.org/10.1243/095440605X32011
- Cheng H. H., Tan C. S. Removal of CO2 from indoor air by alkanolamine in a rotating packed bed // Sep. Purif. Technol. 2011. V. 82. P. 156-166. https://doi.org/10.1016/j.seppur.2011.09.004
- Gale J. A global perspective on the Status of carbon capture / 2016 NETL CO2 Capture Technology Project Meeting. 2016. Pittsburgh, USA. https://netl.doe.gov/ sites/default/files/event-proceedings/2016/c02%20 cap%20review/1-Monday/J-Gale-IEAGG-Status-of- Carbon-Capture.pdf
- Just P. E. Advances in the development of CO2 capture solvents // Energy Procedia. 2013. V. 37. P. 314-324. https://doi.org/10.1016/j.egypro.2013.05.117
- Buvik V., Høisæter K. K., Vevelstad S. J., Knuutila H. K. A Review of degradation and emissions in post- combustion CO2 capture pilot plants // Int. J. Greenh. Gas Control. 2021. V. 106. ID 103246. https://doi.org/10.1016/j.ijggc.2020.103246
- Баженов С. Д., Новицкий Е. Г., Василевский В. П., Грушевенко Е. А., Бьянко А. А., Волков А. В. Термостабильные соли и способы их удаления из алканоламиновых поглотителей диоксида углерода // ЖПХ. 2019. Т. 92. № 8. С. 957-979. https://doi.org/10.1134/S0044461819080024
- Park I. I. H., Choi E. J. Characterization of branched polyethyleneimine by laser light scattering and viscometry // Polymer. 1996. V. 37. N 2. P. 313-319. https://doi.org/10.1016/0032-3861(96)81104-9
- Chen F. F., Huang K., Fan J. P., Tao D. J. Chemical solvent in chemical solvent: A Class of hybrid materials for effective capture of CO2 //AIChE J. 2018. V. 64. N 2. P. 632-639. https://doi.org/10.1002/aic.15952
- Wu T. Y., Wang H. C., Su S. G., Gung S. T., Lin M. W., Lin C. B. Characterization of ionic conductivity, viscosity, density, and self-diffusion coefficient for binary mixtures of polyethyleneglycol (or polyethyleneimine) organic solvent with room temperature ionic liquid BMIBF4 (or BMIPF6) //j. Taiwan Inst. Chem. Eng. 2010. V. 41. N 3. P. 315-325. https://doi.org/10.1016/j.jtice.2009.10.003
- Satyapal S., Filburn T., Trela J., Strange J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications // Energy Fuel. 2001. V. 15. N 2. P. 250- 255. https://doi.org/10.1021/ef0002391
- Caplow M. Kinetics of carbamate formation and breakdown //j. Am. Chem. Soc. 1968. V. 90. N 24. P. 6795-6803. https://doi.org/10.1021/ja01026a041 Danckwerts P. V. The reaction of CO2 with ethanolamines // Chem. Eng. Sci. 1979. V. 34. N 4. P. 443-446. https://doi.org/10.1016/0009-2509(79)85087-3
- Crooks J. E., Donnellan J. P. Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution //j. Chem. Soc. Perkin Trans. 2. 1989. V. 4. P. 331-333. https://doi.org/10.1039/P29890000331
- Yang Z.-Z., He L. N., Zhao Y. N., Li B., Yu B. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion // Energy Environ. Sci. 2011. V. 4. N 10. P. 3971-3975. https://doi.org/10.1039/C1EE02156G
- Bollini P., Didas S. A., Jones C. W. Amine-oxide hybrid materials for acid gas separations //j. Mater. Chem. 2011. V. 39. N 21. P. 15100-15120. https://doi.org/10.1039/C1JM12522B
- Goeppert A., Czaun M., Prakash G. S., Olah G. A. Air as the renewable carbon source of the future: An Overview of CO2 capture from the atmosphere // Energy Environ. Sci. 2012. V. 5. N 7. P. 7833-7853. https://doi.org/10.1039/C2EE21586A
- Gelles T., Lawson S., Rownaghi A. A., Rezaei F. Recent advances in development of amine functionalized adsorbents for CO2 capture // Adsorption. 2020. V. 26. P. 5-50. https://doi.org/10.1007/s10450-019-00151-0
- Иоффе И. И., Письмен Л. М. Инженерная химия гетерогенного катализа. М.: Химия, 1965. C. 300- 338.
- Xu X., Song C., Andresen J. M., Miller B. G., Scaroni A. W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high- capacity adsorbent for CO2 capture // Energy Fuel. 2002. V. 16. N 6. P. 1463-1469. https://doi.org/10.1021/ef020058u
- Wang X. Schwartz V., Clark J. C., Ma X., Overbury S. H., Xu X., Song C. Infrared study of CO2 sorption over "molecular basket" sorbent consisting of polyethylenimine-modified mesoporous molecular sieve //j. Phys. Chem. C. 2009. V. 113. N 17. P. 7260- 7268. https://doi.org/10.1021/jp809946y
- Son W. J., Choi J. S., Ahn W. S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials // Micropor. Mesopor. Mater. 2008. V. 113. N 1-3. P. 31-40. https://doi.org/10.1016/j.micromeso.2007.10.049
- Chen C., Yang S. T., Ahn W. S., Ryoo R. Amine- impregnated silica monolith with a hierarchical pore structure: Enhancement of CO2 capture capacity // Chem.Commun. 2009. N 24. P. 3627-3629. https://doi.org/10.1039/B905589D
- Jung W., Lee J. Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO2 capture based on PEI-silica sorbent // Energy 2022. V. 238. ID 121864. https://doi.org/10.1016/j.energy.2021.121864
- Yue M. B., Chun Y., Cao Y., Dong X., Zhu J. H. CO2 capture by as-prepared SBA-15 with an occluded organic template // Adv. Funct. Mater. 2006. V. 16. N 13. P. 1717-1722. https://doi.org/10.1002/adfm.200600427
- Yue M. B., Sun L. B., Cao Y., Wang Y., Wang Z. J., Zhu J. H. Efficient CO2 capturer derived from as- synthesized MCM-41 modified with amine // Chem. Eur. J. 2008. V. 14. N 11. P. 3442-3451. https://doi.org/10.1002/chem.200701467
- Chen C., Kim J., Ahn W. S. CO2 capture by amine- functionalized nanoporous materials: A Review // Korean J. Chem. Eng. 2014. V. 31. P. 1919-1934. https://doi.org/10.1007/s11814-014-0257-2
- Hicks J. C., Drese J. H., Fauth D. J., Gray M. L., Qi G., Jones C. W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly //j. Am. Chem. Soc. 2008. V. 130. N 10. P. 2902-2903. https://doi.org/10.1021/ja077795v
- Shen X., Yan F., Li C., Qu F., Wang Y., Zhang Z. Biogas upgrading via cyclic CO2 adsorption: Application of highly regenerable PEI@nano-Al2O3 adsorbents with anti-urea properties // Environ. Sci. Tech. 2021. V. 55. N 8. P. 5236-5247. https://doi.org/10.1021/acs.est.0c07973
- Palkovits R., Yang C. M., Olejnik S., Schüth F. Active sites on SBA-15 in the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam //j. Catal. 2006. V. 243. N 1. P. 93-98. https://doi.org/10.1016/j.jcat.2006.07.004
- Wan M. M., Zhu H. Y., Li Y. Y., Ma J., Liu S., Zhu J. H. Novel CO2-capture derived from the basic ionic liquids orientated on mesoporous materials // ACS Appl. Mater.Interf. 2014. V. 6. N 15. P. 12947-12955. https://doi.org/10.1021/am5028814
- Iyer K. S., Luzinov I. Effect of macromolecular anchoring layer thickness and molecular weight on polymer grafting // Macromolecules. 2004. V. 37. N 25. P. 9538-9545. https://doi.org/10.1021/ma0493168
- Karim A., Tsukruk V. V., Douglas J. F., Satija S. K., Fetters L. J., Reneker D. H., Foster M. D. Self- organization of polymer brush layers in a poor solvent //j. Phys. II. 1995. V. 5. N 10. P. 1441-1456. https://doi.org/10.1051/jp2:1995193
- Taylor W., Jones R. A. L. Producing high-density high- molecular-weight polymer brushes by a "grafting to" method from a concentrated homopolymer solution // Langmuir. 2010. V. 26. N 17. P. 13954-13958. https://doi.org/10.1021/la101881j
- Pat. US 5087597 (publ. 1992). Carbon dioxide adsorbent and method for producing the adsorbent.
- Leal O., Bolívar C., Ovalles C., García J. J., Espidel Y. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel // Inorg. Chim. Acta. 1995. V. 240. N 1. P. 183-189. https://doi.org/10.1016/0020-1693(95)04534-1
- Harlick P. J. E., Sayari A. Applications of pore- expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance // Ind. Eng. Chem. Res. 2007. V. 46. N 2. P. 446-458. https://doi.org/10.1021/ie060774+
- Harlick P.J. E., Sayari A. Applications of pore- expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption // Ind. Eng. Chem. Res. 2006. V. 45. N 9. P. 3248-3255. https://doi.org/10.1021/ie051286p
- Chang F.-Y., Chao K. J., Cheng H. H., Tan C. S. Adsorption of CO2 onto amine-grafted mesoporous silicas // Sep. Purif. Tech. 2009. V. 70. N 1. P. 87-95. https://doi.org/10.1016/j.seppur.2009.08.016
- Huang H. Y., Yang R. T., Chinn D., Munson C. L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas // Ind. Eng. Chem. Res. 2003. V. 42. N 12. P. 2427-2433. https://doi.org/10.1021/ie020440u
- Feng X., Fryxell G. E., Wang L. Q., Kim A. Y., Liu J., Kemner K. M. Functionalized monolayers on ordered mesoporous supports // Science. 1997. V. 276. N 5314. P. 923-926. https://doi.org/10.1126/science.276.5314.923
- Qi G., Fu L., Giannelis E. P. Sponges with covalently tethered amines for high-efficiency carbon capture // Nature Commun. 2014. V. 5. N 1. ID 5796. https://doi.org/10.1038/ncomms6796
- Kim H. J., Moon J. H., Park J. W. A Hyperbranched poly(ethyleneimine) grown on surfaces //j. Colloid Interf. Sci. 2000. V. 227. N 1. P. 247-249. https://doi.org/10.1006/jcis.2000.6861
- Yang Y., Li H., Chen S., Zhao Y., Li Q. Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber //Langmuir. 2010. V. 26. N 17. P. 13897-13902. https://doi.org/10.1021/la101281v
Дополнительные файлы
