Термодинамические свойства керамики на основе оксидов гафния и редкоземельных элементов при высоких температурах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассмотрены полученные ранее экспериментальные данные о процессах испарения и термодинамические свойства керамики на основе оксидов гафния и редкоземельных элементов при высоких температурах. Масс-спектрометрическим эффузионным методом Кнудсена впервые изучена система La2O3–Sm2O3 при температуре 2323 K. В результате идентифицирован состав пара над исследованными образцами керамики, определены концентрационные зависимости парциальных давлений молекулярных форм пара над рассматриваемой системой и термодинамических свойств в конденсированной фазе, таких как активности компонентов и избыточная энергия Гиббса. С привлечением полинома Вильсона определена энтальпия образования из оксидов и избыточная энтропия системы La2O3–Sm2O3 при указанной температуре. На основе полученных данных рассчитаны термодинамические свойства в четырехкомпонентных системах La2O3–Sm2O3–Y2O3–HfO2 и La2O3–Sm2O3–ZrO2–HfO2 по данным о равновесиях в соответствующих бинарных системах полуэмпирическими методами Колера, Редлиха–Кистера и Вильсона при температуре 2330 K. Результаты выполненного расчета сопоставлены с соответствующими величинами, оцененными ранее полуэмпирическими методами на примере систем La2O3–Y2O3–ZrO2–HfO2 и Sm2O3–Y2O3–ZrO2–HfO2. Показано, что в системах La2O3–Sm2O3–Y2O3–HfO2 и La2O3–Sm2O3–ZrO2–HfO2 наилучшее соответствие с экспериментальными значениями активностей оксидов лантаноидов может быть получено при расчете на основе метода Вильсона.

Об авторах

В. А. Ворожцов

Санкт-Петербургский государственный университет; Институт химии силикатов им. И.В. Гребенщикова РАН

Email: v.stolyarova@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7–9; Россия, 199034, Санкт-Петербург, наб. Адмирала Макарова, 2

В. Л. Столярова

Санкт-Петербургский государственный университет

Email: v.stolyarova@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7–9

С. А. Кириллова

Институт химии силикатов им. И.В. Гребенщикова РАН; Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)

Email: v.stolyarova@spbu.ru
Россия, 199034, Санкт-Петербург, наб. Адмирала Макарова, 2; Россия, 197022, Санкт-Петербург, ул. Профессора Попова, 5, лит. Ф

С. И. Лопатин

Санкт-Петербургский государственный университет; Институт химии силикатов им. И.В. Гребенщикова РАН

Автор, ответственный за переписку.
Email: v.stolyarova@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7–9; Россия, 199034, Санкт-Петербург, наб. Адмирала Макарова, 2

Список литературы

  1. Wang J., Li H.P., Stevens R. // J. Mater. Sci. 1992. V. 27. № 20. P. 5397. https://doi.org/10.1007/BF00541601
  2. Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. № 6. P. 22. https://doi.org/10.1016/S1369-7021(05)70934-2
  3. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. № 12. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
  4. Pan W., Phillpot S.R., Wan C. et al. // MRS Bull. 2012. V. 37. № 10. P. 917. https://doi.org/10.1557/mrs.2012.234
  5. Darolia R. // Int. Mater. Rev. 2013. V. 58. № 6. P. 315. https://doi.org/10.1179/1743280413Y.0000000019
  6. Каблов Е.Н. Литые лопатки газотурбинных двигателей: сплавы, технологии, покрытия. М.: Наука, 2006. 632 с.
  7. Петрушин Н.В., Оспенникова О.Г., Светлов И.Л. // Авиац. материалы и технологии. 2017. Т. 49. С. 72.
  8. Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. № 1. P. 1. https://doi.org/10.1016/S0955-2219(03)00129-8
  9. Чубаров Д.A., Матвеев П.В. // Авиац. материалы и технологии. 2013. Т. 29. № 4. С. 43. https://www.elibrary.ru/item.asp?id=20421193
  10. Vassen R., Jarligo M.O., Steinke T. et al. // Surf. Coat. Technol. 2010. V. 205. № 4. P. 938. https://doi.org/10.1016/j.surfcoat.2010.08.151
  11. Казенас Е.К. Термодинамика испарения двойных оксидов. М.: Наука, 2004. 551 с. https://elibrary.ru/item.asp?id=19468800
  12. Lukas H.L., Fries S.G., Sundman B. Computational thermodynamics: The Calphad method. Cambridge: Cambridge University Press, 2007. 313 p. https://doi.org/10.1017/CBO9780511804137
  13. Schneider S.J., Roth R.S. // J. Res. Natl. Bur. Stand. A. Phys. Chem. 1960. V. 64A. № 4. P. 317. https://doi.org/10.6028/JRES.064A.031
  14. Coutures J., Rouanet A., Verges R., Foex M. // J. Solid State Chem. 1976. V. 17. № 1–2. P. 171. https://doi.org/10.1016/0022-4596(76)90218-8
  15. Корнієнко О.А. // Укр. хім. журн. 2018. Т. 84. № 3. С. 28.
  16. Zinkevich M. // Prog. Mater. Sci. 2007. V. 52. № 4. P. 597. https://doi.org/10.1016/J.PMATSCI.2006.09.002
  17. Казенас Е.К., Цветков Ю.В. Термодинамика испарения оксидов. М.: Изд-во ЛКИ, 2008. 480 с. https://elibrary.ru/item.asp?id=19470483
  18. Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Справочное издание / Отв. ред. Глушко В.П. М.: Наука, 1982. Т. IV. Кн. 2. 560 с.
  19. Shugurov S.M., Kurapova O.Y., Lopatin S.I. et al. // Rapid Commun. Mass Spectrom. 2017. V. 31. № 23. P. 2021. https://doi.org/10.1002/rcm.7997
  20. Ackermann R.J., Rauh E.G. // J. Chem. Thermodyn. 1971. V. 3. № 4. P. 445. https://doi.org/10.1016/S0021-9614(71)80027-7
  21. Walsh P.N., Goldstein H.W., White D. // J. Am. Ceram. Soc. 1960. V. 43. № 5. P. 229. https://doi.org/10.1111/J.1151-2916.1960.TB14589.X
  22. Goldstein H.W., Walsh P.N., White D. // J. Phys. Chem. 1961. V. 65. № 8. P. 1400. https://doi.org/10.1021/J100826A029
  23. Vorozhtcov V.A., Stolyarova V.L., Lopatin S.I. et al. // J. Alloys Compd. 2018. V. 735. P. 2348. https://doi.org/10.1016/J.JALLCOM.2017.11.319
  24. Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Shugurov S.M. // Russ. J. Gen. Chem. 2020. V. 90. № 5. P. 874. [Столярова В.Л., Ворожцов В.А., Лопатин С.И., Шугуров С.М. // Журн. общ. химии. 2020. Т. 90. № 5. С. 787. https://doi.org/10.31857/S0044460X20050194]https://doi.org/10.1134/S1070363220050199
  25. Hilpert K. // Rapid Commun. Mass Spectrom. 1991. V. 5. № 4. P. 175. https://doi.org/10.1002/rcm.1290050408
  26. Drowart J., Chatillon C., Hastie J., Bonnell D. // Pure Appl. Chem. 2005. V. 77. № 4. P. 683. https://doi.org/10.1351/pac200577040683
  27. Lopatin S.I., Shugurov S.M., Tyurnina Z.G., Tyurnina N.G. // Glass Phys. Chem. 2021. V. 47. № 1. P. 38. [Лопатин С.И., Шугуров С.М., Тюрнина З.Г., Тюрнина Н.Г. // Физика и химия стекла. 2021. Т. 47. № 1. С. 50. https://doi.org/10.31857/S0132665121010078]https://doi.org/10.1134/S1087659621010077
  28. Lopatin S.I. // Glass Phys. Chem. 2022. V. 48. № 2. P. 117. [Лопатин С.И. // Физика и химия стекла. 2022. Т. 48. № 2. С. 163. https://doi.org/10.31857/S0132665122020056]https://doi.org/10.1134/S1087659622020055
  29. Семенов Г.А., Николаев Е.Н., Францева К.Е. Применение масс-спектрометрии в неорганической химии. Л.: Химия. Ленингр. отд-ние, 1976. 151 с.
  30. Paule R.C., Mandel J. // Pure Appl. Chem. 1972. V. 31. № 3. P. 371. https://doi.org/10.1351/pac197231030371
  31. Zeifert P.L. // High Temperature Technology. N.Y.: John Wiley, 1956. P. 485.
  32. Сидоров Л.Н., Акишин П.А. // Докл. АН СССР. 1963. № 151. № 1. С. 136.
  33. Sidorov L.N., Shol’ts V.B. // Int. J. Mass Spectrom. Ion Phys. 1972. V. 8. № 5. P. 437. https://doi.org/10.1016/0020-7381(72)80014-7
  34. Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345. https://doi.org/10.1021/ie50458a036
  35. Wilson G.M. // J. Am. Chem. Soc. 1964. V. 86. № 2. P. 127. https://doi.org/10.1021/ja01056a002
  36. Orye R. V., Prausnitz J.M. // Ind. Eng. Chem. 1965. V. 57. № 5. P. 18. https://doi.org/10.1021/ie50665a005
  37. Hardy H.K. // Acta Metall. 1953. V. 1. № 2. P. 202. https://doi.org/10.1016/0001-6160(53)90059-5
  38. Hildebrand J.H. // J. Am. Chem. Soc. 1929. V. 51. № 1. P. 66. https://doi.org/10.1021/ja01376a009
  39. Kohler F. // Monatsh. Chem. 1960. V. 91. № 4. P. 738. https://doi.org/10.1007/BF00899814
  40. Vorozhtcov V.A., Kirillova S.A., Shilov A.L. et al. // Mater. Today Commun. 2021. V. 29. P. 102952. https://doi.org/10.1016/j.mtcomm.2021.102952
  41. Darken L.S. // J. Am. Chem. Soc. 1950. V. 72. № 7. P. 2909. https://doi.org/10.1021/ja01163a030
  42. Barker J.A. // J. Chem. Phys. 1952. V. 20. № 10. P. 1526. https://doi.org/10.1063/1.1700209

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (92KB)
3.

Скачать (216KB)
4.

Скачать (200KB)
5.

Скачать (126KB)

© В.А. Ворожцов, В.Л. Столярова, С.А. Кириллова, С.И. Лопатин, 2023