Transformation of nonstationary Navier–Stokes equations of a viscous compressible fluid under an arbitrary conformal mapping
- 作者: Dynnikova G.Y.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 89, 编号 1 (2025)
- 页面: 17-25
- 栏目: Articles
- URL: https://modernonco.orscience.ru/0032-8235/article/view/688456
- DOI: https://doi.org/10.31857/S0032823525010023
- EDN: https://elibrary.ru/BOLSMJ
- ID: 688456
如何引用文章
详细
It is shown that, the circulation of velocity and fluid flow on any closed or open contour are preserved under an arbitrary conformal mapping of the two-dimensional viscous compressible flow region. The transformed unsteady Navier–Stokes, continuity and heat balance equations, which govern the aerodynamic parameters in the mapped region, are derived.
全文:

作者简介
G. Dynnikova
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: dyn@imec.msu.ru
Research Institute of Mechanics
俄罗斯联邦, Moscow参考
- Lavrentyev M.A., Shabat B.V. Methods of the Theory of Functions of Complex Variable. Moscow: Nauka, 1965. (in Russian)
- Rabinovich B.I., Tyurin Y.V. Numerical Conformal Mapping in Two-dimensional Hydrodynamics & Related Problems of Electrodynamics and Elasticity Theory. Moscow: Space Res. Inst. of the RAS, 2000. 312 p.
- Titova A.A. A Problem of an ideal fluid flow with a singular sink at a depression on the bottom // J. Appl. Ind. Math., 2021, vol. 15, pp. 513–530.
- Shamin R.V. Dynamics of an ideal fluid with a free surface in conformal variables // Modern Math. Fundam. Directions, 2008, vol. 28. pp. 3–144. (in Russian)
- Dyachenko A.I. On the dynamics of an ideal fluid with a free surface // Dokl. Math., 2001, vol. 63, no. 1, pp. 115–117.
- Mizumoto H. A note on the numerical treatment of Navier–Stokes equations. I // J. of the Phys. Soc. of Japan, 1973, vol. 34, no. 5, pp. 1452–1456.
- Dynnikova G.Y., Guvernyuk S.V., Demchenko Y.V. et al. An efficient algorithm for calculating boundary elements in vortex methods // Engng. Anal. with Boundary Elements, 2023, vol. 151, pp. 394–399.
- Dynnikova G.Y. Calculation of flow around a circular cylinder on the basis of two-dimensional Navier–Stokes equations at large Reynolds numbers with high resolution in a boundary layer // Dokl. Phys., 2008, vol. 53, no. 10, pp. 544–547.
- Dynnikova G. Simulation of two-dimensional flow around an elliptical cylinder at high Reynolds numbers // Phys. of Fluids, 2024, vol. 36, no. 023109, pp. 1–6.
- Loitsyanskii L.G. Mechanics of Liquids and Gases. Oxford: Pergamon, 1966.
补充文件
