Bifunctional Effect of Fusarium stercicola F8 Strain on Microcystis aeruginosa Cyanobacterium

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A new strain of fungus Fusarium sp. F8 was isolated from the waters of the Gulf of Finland during the period of active cyanobacteria vegetation. The fungal strain F8 was identified by morphological and cultural characteristics and by phylogenetic analysis based on the nucleotide sequences of two DNA loci (ITS and tef) as F. stercicola. Strain F. stercicola F8 exhibited high (97%) algicidal activity against cyanobacteria Microcystis aeruginosa. The indirect mechanism of the algicidal action of strain Fusarium stercicola F8 by releasing exometabolites into the medium was shown. The filtrate of the fungal culture liquid was not toxic to the Daphnia magna and Paramecium caudatum. The property of strain F8 to degrade highly toxic microcystin-LR (MC–LR) was revealed. A decrease in the MC–LR content in the culture medium of the isolated strain Fusarium stercicola F8 was found from 0.5 μg/ml to 0.28 μg/ml in 72 hours. The revealed dual action mechanism of the F. stercicola F8 strain on Microcystis aeruginosa is of interest for further research in order to develop biotechnologies for controlling the mass development of toxigenic cyanobacteria in water bodies.

作者简介

N. Medvedeva

Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences

Email: ngmedvedeva@gmail.com
St. Petersburg, Russia

I. Kuzikova

Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences

Email: ilkuzikova@yandex.ru
St. Petersburg, Russia

T. Zaytseva

Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences

Email: zaytseva.62@list.ru
St. Petersburg, Russia

A. Sazanova

All-Russia Research Institute for Agricultural Microbiology

Email: anna_sazanova@mail.ru
St. Petersburg, Russia

参考

  1. Ahmed A. M., Mahmoud B. K., Millan-Aguinaga N. et al. The endophytic Fusarium strains: A treasure trove of natural products. RSC Adv. 2023. V. 13. P. 1339–1369. https://doi.org/10.1039/D2RA04126J
  2. Amuzu P., Pan X., Hou X. et al. Recent updates on the secondary metabolites from Fusarium fungi and their biological activities (covering 2019 to 2024). J. Fungi. 2024. V. 10. P. 778. https://doi.org/ 10.3390/jof10110778
  3. Bahadur A. Current status of Fusarium and their management strategies. 2021. https://doi.org/10.5772/intechopen.100608.
  4. Bilay V. I., Kurbatskaya Z. A. Identifier of toxin-forming microfungi. Naukova Dumka, Kiev, 1990. (In Russ.).
  5. Chorus I., Bartram J. Toxic Cyanobacteria in water: a guide to public health significance, monitoring and management. World Health Organization. Chapman and Hall, L., 1999.
  6. Crous P. W., Lombard L., Sandoval-Denis M. et al. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol. 2021. V. 17 (98). P. 100116. https://doi.org/10.1016/j.simyco.2021.100116
  7. Fu Y., Wu P., Xue J. et al. Cosmosporasides F–H, three new sugar alcohol conjugated acyclic sesquiterpenes from a Fusarium oxysporum fungus. Nat. Prod. Res. 2022. V. 36. P. 3420–3428. https://doi.org/10.1080/14786419.2020.1864366
  8. Geiser D. M., Al-Hatmi A.M.S., Aoki T. et al. Phylogenomic analysis of a 55.1-kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology. 2021. V. 111 (7). Art. Phyto08200330LE. https://doi.org/10.1094/phyto-08-20-0330-LE
  9. Guo Y. W., Liu X. J., Yuan J. et al. Tryptophan induces a marine-derived Fusarium sp. to produce indole alkaloids with activity against the Zika virus. J. Nat. Prod. 2020. V. 83. P. 3372–3380. https://doi.org/10.1021/acs.jnatprod.0c00717
  10. Han G., Feng X., Jia Y. et al. Isolation and evaluation of terrestrial fungi with algicidal ability from Zijin Mountain, Nanjing, China. J. Microbiol. 2011. V. 49 (4). P. 562. http://doi.org/10.1007/s12275-011-0496-4
  11. Hidayat A., Tachibana S. Biodegradation of aliphatic hydrocarbon in three types of crude oil by Fusarium sp. F092 under stress with Artificial sear water. J. Env. Sci. Technol. 2012. V. 5. P. 64–73.
  12. Jia Y., Han G., Wang C. et al. The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. J. Hazard. Mater. 2010. V. 183 (1–3). P. 176. https://doi.org/10.1016/j.jhazmat.2010.07.009
  13. Jiang C.-X., Li J., Zhang J.-M. et al. Isolation, identification, and activity evaluation of chemical constituents from soil fungus Fusarium avenaceum SF-1502 and endophytic fungus Fusarium proliferatum AF-04. J. Agric. Food Chem. 2019. V. 67. P. 1839–1846. https://doi.org/10.1021/acs.jafc.8b05576
  14. Kumar S., Stecher G., Li M. et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018. V. 35 (6). P. 1547–1549. http://dx.doi.org/10.1093/molbev/msy096
  15. Kuzikova I., Zaytseva T., Chernova E. et al. Algicidal activity and microcystin-LR destruction by a novel strain Penicillium sp. GF3 isolated from the Gulf of Finland (Baltic Sea). Toxins. 2023. V. 15. P. 607. https://doi.org/10.3390/toxins15100607
  16. Kuzikova I., Zaytseva T., Chernova E. et al. Impact of algicidal fungus Aspergillus welwitschiae GF6 on harmful bloom-forming cyanobacterium Microcystis aeruginosa: growth and physiological responses. Chemosphere. 2025. V. 372. 144090. https://doi.org/10.1016/j.chemosphere.2025.144090
  17. McLean M. The phytotoxicity of Fusarium metabolites: An update since 1989. Mycopathologia. 1996. V. 133. P. 163–179.
  18. Medvedeva N. G., Kuzikova I. L. Sorption and biodestruction of microcystin-LR by Penicillium verrucosum CP4 strain isola- ted from the bottom sediments of Sestroretsky Razliv Lake. Mikologiya i fitopatologiya. 2023. V. 57 (4). P. 291–297. https://doi.org/10.31857/S0026364823040062
  19. Methodology for determining the toxicity of samples of natural, drinking, domestic and drinking, domestic waste, treated waste, waste, melt, and industrial waters by an express method using a Biotester series device. PND FT 14.1: 2: 3: 4.2–98 (2015 edn). Moscow, 2015. (In Russ.).
  20. Methodology for measuring the quantity of Daphnia magna Straus for determining the toxicity of drinking, fresh natural and waste water, aqueous extracts from soils, soils, sewage sludge, industrial and consumer waste by the direct counting method. PND FT 14.1: 2: 3: 4.12–06. T 16.1: 2: 2.3: 3.9–06. Moscow, 2014. (In Russ.).
  21. Mohamed Z. A., Hashem M., Alamri S. et al. Fungal biodegradation and removal of cyanobacteria and microcystins: potential applications and research needs. Environm. Sci. Pollution Res. 2021. V. 28. P. 37041–37050. https://doi.org/10.1007/s11356-021-14623-w
  22. Mohamed Z. A., Hashem M., Alamri S. A. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride. Toxicon. 2014. V. 86. P. 51–58. https://doi.org/10.1016/j.toxicon.2014.05.008
  23. Palmero D., Iglesias C., de Cara M. et al. Species of Fusarium isolated from river and sea water of southeastern Spain and pathogenicity on four plant species. Plant Disease. 2009. V. 93 (4). P. 377–385. https://doi.org/10.1094/pdis-93-4-0377
  24. Pham G. N., Josselin B., Cousseau A. et al. New fusarochromanone derivatives from the marine fungus Fusarium equiseti UBOCC-A-117302. Mar. Drugs. 2024. V. 22. P. 444. https://doi.org/10.3390/md22100444
  25. Pierzgalski A., Bryla M., Kanabus J. et al. Updated review of the toxicity of selected Fusarium toxins and their modified forms. Toxins. 2021. V. 13. P. 768. https://doi.org/10.3390/toxins13110768
  26. Rippka R., Deruelles J., Waterbury J. B. et al. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1974. V. 111. P. 1–61. http://doi.org/10.1099/00221287-111-1-25
  27. Šišić A., Al-Hatmi AMS., Baćanović-Šišić J. et al. Two new species of the Fusarium solani species complex isolated from compost and hibiscus (Hibiscus sp.). Antonie van Leeuwenhoek. 2018. V. 111 (10). P. 1785–1805. http://doi.org/10.1007/s10482-018-1068-y
  28. Sivarajah B., Simmatis B., Favot E. J. et al. Eutrophication and climatic changes lead to unprecedented cyanobacterial blooms in a Canadian sub-Arctic landscape. Harmful Algae. 2021. V. 105. Article 102036. https://doi.org/10.1016/j.hal.2021.102036
  29. Summerell B. A. Resolving Fusarium: Current status of the genus. Ann. Rev. Phytopathol. 2019. V. 57. P. 323–339. https://doi.org/10.1146/annurev-phyto-082718-100204
  30. Terekhova V. A. Microfungi in the ecological assessment of aquatic and terrestrial ecosystems. Nauka, Moscow, 2007. (In Russ.).
  31. Xu D., Xue M., Shen Z. et al. Phytotoxic secondary metabolites from fungi. Toxins. 2021. V. 13. P. 261. https://doi.org/10.3390/toxins13040261
  32. Yang J.-M., Liao Y.-J., Chen N. et al. Cyclic hexadepsipeptides from the fermentation of Fusarium sp. DCJ-A and their cytotoxic activities. J. Asian Nat. Prod. Res. 2023. V. 25. P. 503–509. https://doi.org/10.1080/10286020.2022.2098471
  33. Zeng G., Wang P., Wang Y. Algicidal efficiency and mechanism of Phanerochaete chrysosporium against harmful algal bloom species. Algal Res. 2015. V. 12. P. 182. http://doi.org/10.1016/j.algal.2015.08.019
  34. Zhang Q., Lv L., Wang W. et al. Recent advances of bioactive marine natural products in drug discovery. J. Ocean Univ. China. 2024. V. 23. P. 1297–1318. https://doi.org/10.1007/s11802-024-5975-4
  35. Zhao D. L., Liu J., Han X. B. et al. Decalintetracids A and B, two pairs of unusual 3-decalinoyltetramic acid derivatives with phytotoxicity from Fusarium equiseti D39. Phytochemistry. 2022. V. 197. P. 113125. https://doi.org/10.1016/j.phytochem.2022.113125
  36. Zhu H., Zhu L., Ding N. Genomic insights into the aquatic Fusarium spp. QHM and BWC1 and their application in phenol degradation. Curr. Microbiol. 2020. V. 77. P. 2279–2286. https://doi.org/10.1007/s00284-020-02050-y
  37. Zuo X., Xu W., Wei S. et al. Characterization of a novel aciduric and halotolerant aerobic denitrifying fungus Fusarium solani DS3 isolated from coastal seawater. Bioresource Technol. Rep. 2021. V. 16. e100839. https://doi.org/10.1016/j.biteb.2021.100839
  38. Билай В. И., Курбацкая З. А. (Bilay, Kurbatskaya) Определитель токсинобразующих микромицетов. Киев: Наук. думка, 1990. 233с.
  39. Методика измерений количества Daphnia magna Straus для определения токсичности питьевых, пресных природных и сточных вод, водных вытяжек из грунтов, почв, осадков сточных вод, отходов производства и потребления методом прямого счета (Methodology for measuring). ПНД Ф Т 14.1: 2: 3: 4.12–06. Т 16.1: 2: 2.3: 3.9–06. М., 2014.
  40. Методика определения токсичности проб природных, питьевых, хозяйственно-питьевых, хозяйственно-бытовых сточных, очищенных сточных, сточных, талых, технологических вод экспресс – методом с применением прибора серии “Биотестер” (Methodology for determining). ПНД Ф Т 14.1: 2: 3: 4.2–98 (ред. 2015 г.). М., 2015.
  41. Терехова В. А. (Terekhova) Микромицеты в экологической оценке водных и наземных экосистем. М.: Наука, 2007. 215 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025