Detection of Malassezia Fungi in Microplankton and Fishes in the Severnaya Bay, Sevastopol (Russia)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In this study, the microplankton and mycobiota of fish in Severnaya Bay, Sevastopol, was assessed using real-time PCR (RT-PCR). Microplankton samples were collected using a Biber-2 sequential filtration setup, and microbiota samples were obtained from the surface of fishes (Trachurus mediterraneus and Spicara smaris). DNA was extracted by alkaline lysis during high-temperature incubation and analyzed for the presence of 13 species of fungal pathogens from the genera Candida, Malassezia, Saccharomyces, and Debaryomyces. A positive result was obtained for Malassezia spp. in the planktonic fraction (150–300 µm), and a signal was detected from the surface of Trachurus mediterraneus. Other fungal pathogens, including Candida albicans, Debaryomyces hansenii, and Meyerozyma guilliermondii, were not detected. The results emphasize the role of microplankton and fish as potential reservoirs of fungal pathogens in marine ecosystems.

作者简介

N. Kolbasov

Sevastopol State University

Email: kiku200@yandex.ru
Sevastopol, Russia

Yu. Podkidysheva

Pirogov Russian National Research Medical University

Moscow, Russia

A. Shevyrev

“DNA-technology” Company

Moscow, Russia

A. Kuznetsov

Sevastopol State University; A. O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences

Email: kuznet61@gmail.com
Sevastopol, Russia; Sevastopol, Russia

参考

  1. Amend A. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLOS Pathog. 2014. V. 10 (8). Art. e1004277. https://doi.org/10.1371/journal.ppat.1004277
  2. Amend A. S., Burgaud G., Cunliffe M. et al. Fungi in the marine environment: open questions and unsolved problems. mBio. 2019. V. 10 (2). Art. e01189–18. https://doi.org/10.1128/mBio.01189-18
  3. Begerow D., Bauer R., Boekhout T. Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycol. Res. 2000. V. 104 (1). P. 53–60. https://doi.org/10.1017/S0953756299001161
  4. Bond R., Morris D. O., Guillot J. et al. Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats clinical consensus guidelines of the world association for veterinary dermatology. Vet. Dermatol. 2020. V. 31 (1). 27-e4. https://doi.org/10.1111/vde.12809
  5. Breyer E., Stix C., Kilker S., et al. The contribution of pelagic fungi to ocean biomass. Cell. 2025. V. 188. Is. 15. P. 3992–4002. https://doi.org/10.1016/j.cell.2025.05.004
  6. Breyer E., Zhao Z., Herndl G. J., et al. Global contribution of pelagic fungi to protein degradation in the ocean. Microbiome. 2022. V. 10 (1). Art. 143. https://doi.org/10.1186/s40168-022-01329-5
  7. Chang H. J., Miller H. L., Watkins N. et al. An epidemic of Malassezia pachydermatis in an intensive care nursery associated with colonization of health care workers’ pet dogs. N. Engl. J. Med. 1998. V. 338 (11). P. 706–711. https://doi.org/10.1056/NEJM199803123381102
  8. DeAngelis Y.M., Gemmer C. M., Kaczvinsky J. R. et al. Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J. Investig. Dermatol. Symp. Proc. 2005. V. 10 (3). P. 295–297. https://doi.org/10.1111/j.1087-0024.2005.10119.x
  9. Ferrari J., Goncalves P., Campbell A. H. et al. Molecular analysis of a fungal disease in the habitat-forming brown macroalga Phyllospora comosa (Fucales) along a latitudinal gradient. J. Phycol. 2021. V. 57 (5). P. 1504–1516. https://doi.org/10.1111/jpy.13180
  10. Gaitanis G., Magiatis P., Hantschke M. et al. The Malassezia genus in skin and systemic diseases. Clin. Microbiol. Rev. 2012. V. 25 (1). P. 106–141. https://doi.org/10.1128/CMR.00021-11
  11. Gao Z., Li B., Zheng C. et al. Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl. Environ. Microbiol. 2008. V. 74 (19). P. 6091–6101. https://doi.org/10.1128/AEM.01315-08
  12. Garcia-Bustos V., Cabaсero-Navalon M.D., Ruiz-Gaitón A. et al. Climate change, animals, and Candida auris: insights into the ecological niche of a new species from a One Health approach. Clin. Microbiol. Infect. 2023. V. 29 (7). P. 858–862. https://doi.org/10.1016/j.cmi.2023.03.016
  13. Gladfelter A. S., James T. Y., Amend A. S. Marine fungi. Curr. Biol. 2019. V. 29 (6). R191–R195. https://doi.org/10.1016/j.cub.2019.02.009
  14. Guého E., Midgley G., Guillot J. The genus Malassezia with description of four new species. Antonie van Leeuwenhoek. 1996. V. 69 (4). P. 337–355. https://doi.org/10.1007/BF00399623
  15. Harada K., Saito M., Sugita T. et al. Malassezia species and their associated skin diseases. J. Dermatol. 2015. V. 42 (3). P. 250–257. https://doi.org/10.1111/1346-8138.12700
  16. Hyde K. D., Noorabadi M. T., Thiyagaraja V. et al. The 2024 Outline of Fungi and fungus-like taxa. Mycosphere. 2024. V. 15 (1). P. 5146–6239. https://doi.org/10.5943/mycosphere/15/1/25
  17. Kopytina N. I. Microscopic fungi of the Black Sea basin: research directions and prospects. Morskoy biologicheskiy zhurnal. 2019. V. 4 (4). P. 15–33. (In Russ.). https://doi.org/10.21072/mbj.2019.04.4.02
  18. Kopytina N. I., Dudka I. A. Taxonomic diversity of mycobiota of coastal waters of Crimea (Black Sea). Morskoy biologicheskiy zhurnal. 2016. V. 1 (2). (In Russ.). P. 27–38. https://doi.org/10.21072/mbj.2016.01.2.03
  19. Kriss A. E., Rukina E. A., Biryuzova V. I. Microzonality in the distribution of heterotrophic microorganisms in the Black Sea. Mikrobiologiya. 1951. V. 20 (3). P. 256–260. (In Russ.).
  20. Lauritano C., Galasso C. Microbial interactions between marine microalgae and fungi: from chemical ecology to biotechnological possible applications. Mar. Drugs. 2023. V. 21 (5). Art. 310. https://doi.org/10.3390/md21050310
  21. Meyers S. P., Ahearn D. G., Roth F. J. Mycological investigations of the Black Sea. Bull. Mar. Sci. 1967. V. 17 (3). P. 576–596.
  22. Mohamad Lal M. T., Seng Lim L., Lau L. M. et al. Fungal infections and control strategies in cultured marine finfish: a minireview. J. Microorg. Control. 2024. V. 29 (4). P. 127–132. https://doi.org/10.4265/jmc.29.4_127
  23. Op De Beeck M., Lievens B., Busschaert P. et al. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLOS One. 2014. V. 9 (6). Art. e97629. https://doi.org/10.1371/journal.pone.0097629
  24. Pedrosa A. F., Lisboa C., Goncalves Rodrigues A. Malassezia infections: a medical conundrum. J. Am. Acad. Dermatol. 2014. V. 71(1). P. 170–176. https://doi.org/10.1016/j.jaad.2013.12.022
  25. Richards T. A., Jones M. D., Leonard G. et al. Marine fungi: their ecology and molecular diversity. Ann. Rev. Mar. Sci. 2012. V. 4. P. 495–522. https://doi.org/10.1146/annurev-marine-120710-100802
  26. Saunders C. W., Scheynius A., Heitman J. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLOS Pathog. 2012. V. 8 (6). Art. e1002701. https://doi.org/10.1371/journal.ppat.1002701
  27. Sen K., Sen B., Wang G. Diversity, abundance, and ecological roles of planktonic fungi in marine environments. J. Fungi. 2022. V. 8 (5). Art. 491. https://doi.org/10.3390/jof8050491
  28. Steinbach R. M., El Baidouri F., Mitchison-Field L.M.Y. et al. Malassezia is widespread and has undescribed diversity in the marine environment. Fungal Ecol. 2023. V. 65. Art. 101273. https://doi.org/10.1016/j.funeco.2023.101273
  29. Theelen B., Cafarchia C., Gaitanis G. et al. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 2018. V. 56 (Suppl. 1). P. S10–S25. https://doi.org/10.1093/mmy/myx134
  30. Velegraki A., Cafarchia C., Gaitanis G. et al. Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLOS Pathog. 2015. V. 11 (1). Art. e1004523. https://doi.org/10.1371/journal.ppat.1004523
  31. Wu G., Zhao H., Li C. et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLOS Genet. 2015. V. 11 (11). Art. e1005614. https://doi.org/10.1371/journal.pgen.1005614
  32. Копытина Н. И. (Kopytina) Микроскопические грибы бассейна Черного моря: направления и перспективы исследований // Морской биологический журнал. 2019. Т. 4. № 4. 15–33.
  33. Копытина Н.И, Дудка И. А. (Kopytina, Dudka) Таксономическое разнообразие микобиоты прибрежных вод Крыма (Черное море) // Морской биологический журнал. 2016. Т. 1. № 2. С. 27–38.
  34. Крисс А. Е., Рукина Е. А., Бирюзова В. И. (Kriss et al.) Микрозональность в распределении гетеротрофных микроорганизмов в Черном море // Микробиология. 1951. Т. 20. № 3. С. 256–260.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025