БИФУНКЦИОНАЛЬНОЕ ВОЗДЕЙСТВИЕ ШТАММА FUSARIUM STERCICOLA F8 НА ЦИАНОБАКТЕРИИ MICROCYSTIS AERUGINOSA

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Новый штамм гриба Fusarium sp. F8 выделен из воды Финского залива в период активной вегетации цианобактерий. По морфолого-культуральным признакам и с помощью филогенетического анализа, основанного на нуклеотидных последовательностях двух локусов ДНК (ITS и tef) выделенный штамм идентифицирован как F. stercicola. Штамм F. stercicola F8 проявлял высокую (97%-ю) альгицидную активность в отношении цианобактерий Microcystis aeruginosa. Показан непрямой механизм альгицидного действия штамма Fusarium stercicola F8 путем выделения в среду экзометаболитов, ингибирующих и лизирующих клетки цианобактерии. Фильтрат культуральной жидкости гриба не являлся токсичным для рачков Daphnia magna и инфузорий Paramecium caudatum. Выявлено свойство штамма F8 деградировать высокотоксичный микроцистин-LR (MC–LR). Установлено снижение содержания МС–LR с 0.5 мкг/мл до 0.28 мкг/мл за 72 ч в нативном р-ре после культивирования штамма Fusarium stercicola F8. Выявленный двойной механизм воздействия штамма F. stercicola F8 на Microcystis aeruginosa представляет интерес для дальнейших исследований с целью разработки биотехнологий контроля массового развития токсигенных цианобактерий в водных объектах.

Об авторах

Н. Г. Медведева

Санкт-Петербургский Федеральный исследовательский центр Российской академии наук, Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук

Email: ngmedvedeva@gmail.com
197110 Санкт-Петербург, Россия

И. Л. Кузикова

Санкт-Петербургский Федеральный исследовательский центр Российской академии наук, Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук

Email: ilkuzikova@yandex.ru
197110 Санкт-Петербург, Россия

Т. Б. Зайцева

Санкт-Петербургский Федеральный исследовательский центр Российской академии наук, Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук

Email: zaytseva.62@list.ru
197110 Санкт-Петербург, Россия

А. Л. Сазанова

Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии

Email: anna_sazanova@mail.ru
196608 Санкт-Петербург, Россия

Список литературы

  1. Ahmed A. M., Mahmoud B. K., Millan-Aguinaga N. et al. The endophytic Fusarium strains: A treasure trove of natural products. RSC Adv. 2023. V. 13. P. 1339–1369. https://doi.org/10.1039/D2RA04126J
  2. Amuzu P., Pan X., Hou X. et al. Recent updates on the secondary metabolites from Fusarium fungi and their biological activities (covering 2019 to 2024). J. Fungi. 2024. V. 10. P. 778. https://doi.org/ 10.3390/jof10110778
  3. Bahadur A. Current status of Fusarium and their management strategies. 2021. https://doi.org/10.5772/intechopen.100608.
  4. Bilay V. I., Kurbatskaya Z. A. Identifier of toxin-forming microfungi. Naukova Dumka, Kiev, 1990. (In Russ.).
  5. Chorus I., Bartram J. Toxic Cyanobacteria in water: a guide to public health significance, monitoring and management. World Health Organization. Chapman and Hall, L., 1999.
  6. Crous P. W., Lombard L., Sandoval-Denis M. et al. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol. 2021. V. 17 (98). P. 100116. https://doi.org/10.1016/j.simyco.2021.100116
  7. Fu Y., Wu P., Xue J. et al. Cosmosporasides F–H, three new sugar alcohol conjugated acyclic sesquiterpenes from a Fusarium oxysporum fungus. Nat. Prod. Res. 2022. V. 36. P. 3420–3428. https://doi.org/10.1080/14786419.2020.1864366
  8. Geiser D. M., Al-Hatmi A.M.S., Aoki T. et al. Phylogenomic analysis of a 55.1-kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology. 2021. V. 111 (7). Art. Phyto08200330LE. https://doi.org/10.1094/phyto-08-20-0330-LE
  9. Guo Y. W., Liu X. J., Yuan J. et al. Tryptophan induces a marine-derived Fusarium sp. to produce indole alkaloids with activity against the Zika virus. J. Nat. Prod. 2020. V. 83. P. 3372–3380. https://doi.org/10.1021/acs.jnatprod.0c00717
  10. Han G., Feng X., Jia Y. et al. Isolation and evaluation of terrestrial fungi with algicidal ability from Zijin Mountain, Nanjing, China. J. Microbiol. 2011. V. 49 (4). P. 562. http://doi.org/10.1007/s12275-011-0496-4
  11. Hidayat A., Tachibana S. Biodegradation of aliphatic hydrocarbon in three types of crude oil by Fusarium sp. F092 under stress with Artificial sear water. J. Env. Sci. Technol. 2012. V. 5. P. 64–73.
  12. Jia Y., Han G., Wang C. et al. The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. J. Hazard. Mater. 2010. V. 183 (1–3). P. 176. https://doi.org/10.1016/j.jhazmat.2010.07.009
  13. Jiang C.-X., Li J., Zhang J.-M. et al. Isolation, identification, and activity evaluation of chemical constituents from soil fungus Fusarium avenaceum SF-1502 and endophytic fungus Fusarium proliferatum AF-04. J. Agric. Food Chem. 2019. V. 67. P. 1839–1846. https://doi.org/10.1021/acs.jafc.8b05576
  14. Kumar S., Stecher G., Li M. et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018. V. 35 (6). P. 1547–1549. http://dx.doi.org/10.1093/molbev/msy096
  15. Kuzikova I., Zaytseva T., Chernova E. et al. Algicidal activity and microcystin-LR destruction by a novel strain Penicillium sp. GF3 isolated from the Gulf of Finland (Baltic Sea). Toxins. 2023. V. 15. P. 607. https://doi.org/10.3390/toxins15100607
  16. Kuzikova I., Zaytseva T., Chernova E. et al. Impact of algicidal fungus Aspergillus welwitschiae GF6 on harmful bloom-forming cyanobacterium Microcystis aeruginosa: growth and physiological responses. Chemosphere. 2025. V. 372. 144090. https://doi.org/10.1016/j.chemosphere.2025.144090
  17. McLean M. The phytotoxicity of Fusarium metabolites: An update since 1989. Mycopathologia. 1996. V. 133. P. 163–179.
  18. Medvedeva N. G., Kuzikova I. L. Sorption and biodestruction of microcystin-LR by Penicillium verrucosum CP4 strain isola- ted from the bottom sediments of Sestroretsky Razliv Lake. Mikologiya i fitopatologiya. 2023. V. 57 (4). P. 291–297. https://doi.org/10.31857/S0026364823040062
  19. Methodology for determining the toxicity of samples of natural, drinking, domestic and drinking, domestic waste, treated waste, waste, melt, and industrial waters by an express method using a Biotester series device. PND FT 14.1: 2: 3: 4.2–98 (2015 edn). Moscow, 2015. (In Russ.).
  20. Methodology for measuring the quantity of Daphnia magna Straus for determining the toxicity of drinking, fresh natural and waste water, aqueous extracts from soils, soils, sewage sludge, industrial and consumer waste by the direct counting method. PND FT 14.1: 2: 3: 4.12–06. T 16.1: 2: 2.3: 3.9–06. Moscow, 2014. (In Russ.).
  21. Mohamed Z. A., Hashem M., Alamri S. et al. Fungal biodegradation and removal of cyanobacteria and microcystins: potential applications and research needs. Environm. Sci. Pollution Res. 2021. V. 28. P. 37041–37050. https://doi.org/10.1007/s11356-021-14623-w
  22. Mohamed Z. A., Hashem M., Alamri S. A. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride. Toxicon. 2014. V. 86. P. 51–58. https://doi.org/10.1016/j.toxicon.2014.05.008
  23. Palmero D., Iglesias C., de Cara M. et al. Species of Fusarium isolated from river and sea water of southeastern Spain and pathogenicity on four plant species. Plant Disease. 2009. V. 93 (4). P. 377–385. https://doi.org/10.1094/pdis-93-4-0377
  24. Pham G. N., Josselin B., Cousseau A. et al. New fusarochromanone derivatives from the marine fungus Fusarium equiseti UBOCC-A-117302. Mar. Drugs. 2024. V. 22. P. 444. https://doi.org/10.3390/md22100444
  25. Pierzgalski A., Bryla M., Kanabus J. et al. Updated review of the toxicity of selected Fusarium toxins and their modified forms. Toxins. 2021. V. 13. P. 768. https://doi.org/10.3390/toxins13110768
  26. Rippka R., Deruelles J., Waterbury J. B. et al. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1974. V. 111. P. 1–61. http://doi.org/10.1099/00221287-111-1-25
  27. Šišić A., Al-Hatmi AMS., Baćanović-Šišić J. et al. Two new species of the Fusarium solani species complex isolated from compost and hibiscus (Hibiscus sp.). Antonie van Leeuwenhoek. 2018. V. 111 (10). P. 1785–1805. http://doi.org/10.1007/s10482-018-1068-y
  28. Sivarajah B., Simmatis B., Favot E. J. et al. Eutrophication and climatic changes lead to unprecedented cyanobacterial blooms in a Canadian sub-Arctic landscape. Harmful Algae. 2021. V. 105. Article 102036. https://doi.org/10.1016/j.hal.2021.102036
  29. Summerell B. A. Resolving Fusarium: Current status of the genus. Ann. Rev. Phytopathol. 2019. V. 57. P. 323–339. https://doi.org/10.1146/annurev-phyto-082718-100204
  30. Terekhova V. A. Microfungi in the ecological assessment of aquatic and terrestrial ecosystems. Nauka, Moscow, 2007. (In Russ.).
  31. Xu D., Xue M., Shen Z. et al. Phytotoxic secondary metabolites from fungi. Toxins. 2021. V. 13. P. 261. https://doi.org/10.3390/toxins13040261
  32. Yang J.-M., Liao Y.-J., Chen N. et al. Cyclic hexadepsipeptides from the fermentation of Fusarium sp. DCJ-A and their cytotoxic activities. J. Asian Nat. Prod. Res. 2023. V. 25. P. 503–509. https://doi.org/10.1080/10286020.2022.2098471
  33. Zeng G., Wang P., Wang Y. Algicidal efficiency and mechanism of Phanerochaete chrysosporium against harmful algal bloom species. Algal Res. 2015. V. 12. P. 182. http://doi.org/10.1016/j.algal.2015.08.019
  34. Zhang Q., Lv L., Wang W. et al. Recent advances of bioactive marine natural products in drug discovery. J. Ocean Univ. China. 2024. V. 23. P. 1297–1318. https://doi.org/10.1007/s11802-024-5975-4
  35. Zhao D. L., Liu J., Han X. B. et al. Decalintetracids A and B, two pairs of unusual 3-decalinoyltetramic acid derivatives with phytotoxicity from Fusarium equiseti D39. Phytochemistry. 2022. V. 197. P. 113125. https://doi.org/10.1016/j.phytochem.2022.113125
  36. Zhu H., Zhu L., Ding N. Genomic insights into the aquatic Fusarium spp. QHM and BWC1 and their application in phenol degradation. Curr. Microbiol. 2020. V. 77. P. 2279–2286. https://doi.org/10.1007/s00284-020-02050-y
  37. Zuo X., Xu W., Wei S. et al. Characterization of a novel aciduric and halotolerant aerobic denitrifying fungus Fusarium solani DS3 isolated from coastal seawater. Bioresource Technol. Rep. 2021. V. 16. e100839. https://doi.org/10.1016/j.biteb.2021.100839
  38. Билай В. И., Курбацкая З. А. (Bilay, Kurbatskaya) Определитель токсинобразующих микромицетов. Киев: Наук. думка, 1990. 233с.
  39. Методика измерений количества Daphnia magna Straus для определения токсичности питьевых, пресных природных и сточных вод, водных вытяжек из грунтов, почв, осадков сточных вод, отходов производства и потребления методом прямого счета (Methodology for measuring). ПНД Ф Т 14.1: 2: 3: 4.12–06. Т 16.1: 2: 2.3: 3.9–06. М., 2014.
  40. Методика определения токсичности проб природных, питьевых, хозяйственно-питьевых, хозяйственно-бытовых сточных, очищенных сточных, сточных, талых, технологических вод экспресс – методом с применением прибора серии “Биотестер” (Methodology for determining). ПНД Ф Т 14.1: 2: 3: 4.2–98 (ред. 2015 г.). М., 2015.
  41. Терехова В. А. (Terekhova) Микромицеты в экологической оценке водных и наземных экосистем. М.: Наука, 2007. 215 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025