Нейротоксичность ингаляционного воздействия наночастиц оксида свинца на лабораторных животных на уровне экспрессии генов и метаболома

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Введение. Изучение токсичности наночастиц оксида свинца (НЧ PbO) является актуальной задачей в связи с их повсеместной распространённостью в окружающей среде и влиянием на здоровье населения. Особое внимание вызывают нейротоксичные эффекты НЧ PbO. Один из возможных механизмов нейротоксичности – апоптотический процесс, вызванный необратимым повреждением ДНК. Для подтверждения данной гипотезы были проведены исследования экспрессии генов ATM, MDM2 и метаболомный анализ.Цель исследования – изучение нейротоксичности ингаляционного воздействия НЧ PbO на лабораторных животных с помощью анализа экспрессии генов и метаболомики.Материалы и методы. Субхронический эксперимент, заключавшийся в ингаляционном воздействии НЧ PbO в концентрации 1,55 ± 0,06 мг/м3 в течение четырёх недель (за исключением выходных дней), был проведён на 20 белых самках крыс, разделённых на опытную и контрольную группы. Уровень мРНК генов ATM и MDM2 в обонятельной луковице крыс определяли количественной ПЦР в реальном времени. Полуколичественный метаболомный анализ тканей мозга животных проводили с помощью жидкостной хромато-масс-спектрометрии.Результаты. Экспрессия гена ATM в обонятельной луковице была статистически значимо (р < 0,05) выше у животных опытной группы по сравнению с контрольной. Метаболомный анализ выявил у животных из опытной группы изменения в метаболизме лизофосфатидилэтаноламинов, лизофосфатидилхолинов, ацилкарнитинов, омега-3 полиненасыщенных жирных кислот, амида жирной кислоты, фосфорилхолина, инозина и гипоксантина. Для комбинации обнаруженных метаболитов была построена ROC-кривая со значением AUC = 0,903.Ограничения исследования. Данная работа выполнена на самках крыс породы Wistar и не учитывает возможных межполовых различий.Заключение. В совокупности полученные данные анализа экспрессии генов и метаболомики свидетельствуют о том, что ингаляционное воздействие НЧ PbO в концентрации 1,55 ± 0,06 мг/м3 вызывает опосредованный ATM p53-индуцированный апоптоз в мозге животных.Соблюдение этических стандартов. Заключение локального этического комитета ФБУН ЕМНЦ ПОЗРПП Роспотребнадзора: содержание, питание, уход за животными и выведение их из эксперимента осуществляли в соответствии с общепринятыми требованиями с учётом ARRIVE guidelines. Исследования были одобрены локальным этическим комитетом ФБУН ЕМНЦ ПОЗРПП Роспотребнадзора (протокол № 5 от 16.10.2023 г.).Участие авторов: Кикоть А.М. – обработка данных, статистическая обработка, написание текста, редактирование; Унесихина М.С. – сбор материала и обработка данных, статистическая обработка, написание текста, редактирование; Шаихова Д.Р. – обработка данных, редактирование; Берёза И.А. – сбор материала и обработка данных, редактирование; Никогосян К.М. – сбор материала, редактирование; Минигалиева И.А. – концепция и дизайн исследования, редактирование; Сутункова М.П. – концепция и дизайн исследования. Все соавторы – утверждение окончательного варианта статьи, ответственность за целостность всех её частей.Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов в связи с публикацией данной статьи.Финансирование. Исследование не имело спонсорской поддержки.Поступила: 28.03.2025 / Принята к печати: 26.06.2025 / Опубликована: 31.07.2025

Об авторах

Анна Михайловна Кикоть

ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Email: kikotam@ymrc.ru
ORCID iD: 0000-0001-8794-7288

Мария Сергеевна Унесихина

ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Email: unesihinams@ymrc.ru
ORCID iD: 0000-0002-5576-365X

Дарья Рамильевна Шаихова

ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Email: darya.boo@mail.ru
ORCID iD: 0000-0002-7029-3406

Иван Андреевич Берёза

ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Email: berezaia@ymrc.ru
ORCID iD: 0000-0002-4109-9268

Ильзира Амировна Минигалиева

ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Email: ilzira-minigalieva@yandex.ru
ORCID iD: 0000-0002-1871-8593

Карен Мерсопович Никогосян

ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Email: nikoghosyankm@ymrc.ru
ORCID iD: 0009-0003-0780-5733

Марина Петровна Сутункова

ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека; ФГБОУ ВО «Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Email: sutunkova@ymrc.ru
ORCID iD: 0000-0002-1743-7642

Список литературы

  1. Sutunkova M.P., Solovyeva S.N., Chernyshov I.N., Klinova S.V., Gurvich V.B., Shur V.Ya., et al. Manifestation of systemic toxicity in rats after a short-time inhalation of lead oxide nanoparticles. Int. J. Mol. Sci. 2020; 21(3): 690. https://doi.org/10.3390/ijms21030690Elgharabawy R.M., Alhowail A.H., Emara A.M., Aldubayan M.A., Ahmed A.S. The impact of chicory (Cichoriumintybus L.) on hemodynamic functions and oxidative stress in cardiac toxicity induced by lead oxide nanoparticles in male rats. Biomed. Pharmacother. 2021; 137: 111324. https://doi.org/10.1016/j.biopha.2021.111324Minigaliyeva I.A., Klinova S.V., Sutunkova M.P., Ryabova Y.V., Valamina I.E., Shelomentsev I.G., et al. On the mechanisms of the cardiotoxic effect of lead oxide nanoparticles. Cardiovasc Toxicol. 2024; 24(1): 49–61. https://doi.org/10.1007/s12012-023-09814-5Ermolin M.S., Fedotov P.S., Ivaneev A.I., Karandashev V.K., Burmistrov A.A., Tatsy Y.G. Assessment of elemental composition and properties of copper smelter-affected dust and its nano- and micron size fractions. Environ. Sci. Pollut. Res. 2016; 23(23): 23781–90. https://doi.org/10.1007/s11356-016-7637-6Ermolin M.S., Shilobreeva S.N., Fedotov P.S. Study of the chemical composition of ash nanoparticles from the volcanoes of Kamchatka. Geochem. Int. 2023; 61(4): 348–58. https://doi.org/10.1134/S0016702923040043Pal D., Dastoor A., Ariya P.A. Aerosols in an urban cold climate: Physical and chemical characteristics of nanoparticles. Urban Clim. 2020; 34: 100713. https://doi.org/10.1016/j.uclim.2020.100713Bláhová L., Nováková Z., Večeřa Z., Vrlíková L., Dočekal B., Dumková J., et al. The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology. 2020; 14(2): 214–31. https://doi.org/10.1080/17435390.2019.1685696Tulinska J., Krivosikova Z., Liskova A., Mikusova M.L., Masanova V., Rollerova E., et al. Six-week inhalation of lead oxide nanoparticles in mice affects antioxidant defense, immune response, kidneys, intestine and bones. Environ. Sci. Nano. 2022; 9(2): 751–66. https://doi.org/10.1039/D1EN00957EAljelehawy H.A.Q. Effects of the lead, cadmium, manganese heavy metals, and magnesium oxide nanoparticles on nerve cell function in Alzheimer’s and Parkinson’s diseases. Cent. Asian J. Med. Pharm. Sci. Innov. 2022; 2(1): 25–36. https://doi.org/10.22034/CAJMPSI.2022.01.04Кикоть А.М., Шаихова Д.Р., Берёза И.А., Минигалиева И.А., Никогосян К.М., Сутункова М.П. Изменение экспрессии генов, вовлечённых в митохондриальный путь апоптоза, при воздействии наночастиц оксида свинца. Гигиена и санитария. 2024; 103(11): 1429–33. https://doi.org/10.47470/0016-9900-2024-103-11-1429-1433 https://elibrary.ru/pkpdpmXu D., Liang D., Guo Y., Sun Y. Endosulfan causes the alterations of DNA damage response through ATM-p53 signaling pathway in human leukemia cells. Environ. Pollut. 2018; 238: 1048–55. https://doi.org/10.1016/j.envpol.2018.03.044Yin J., Zhou Q., Tan J., Che W., He Y. Inorganic arsenic induces MDM2, p53, and their phosphorylation and affects the MDM2/p53 complex in vitro. Environ. Sci. Pollut. Res. Int. 2022; 29(58): 88078–88. https://doi.org/10.1007/s11356-022-21986-1Liao J., Yang F., Bai Y., Yu W., Qiao N., Han Q., et al. Metabolomics analysis reveals the effects of copper on mitochondria-mediated apoptosis in kidney of broiler chicken (Gallus gallus). J. Inorg. Biochem. 2021; 224: 111581. https://doi.org/10.1016/j.jinorgbio.2021.111581Xia Y., Zhang X., Sun D., Gao Y., Zhang X, Wang L., et al. Effects of water-soluble components of atmospheric particulates from rare earth mining areas in China on lung cancer cell cycle. Part. Fibre. Toxicol. 2021; 18(1): 27. https://doi.org/10.1186/s12989-021-00416-zWang Y., Sun X., Fang L., Li K., Yang P., Du L., et al. Genomic instability in adult men involved in processing electronic waste in Northern China. Environ. Int. 2018; 117: 69–81. https://doi.org/10.1016/j.envint.2018.04.027Peker N., Gozuacik D. Autophagy as a cellular stress response mechanism in the nervous system. J. Mol. Biol. 2020; 432(8): 2560–88. https://doi.org/10.1016/j.jmb.2020.01.017Pal P., Jha N.K., Pal D., Jha S.K., Anand U., Gopalakrishnan A.V., et al. Molecular basis of fluoride toxicities: Beyond benefits and implications in human disorders. Genes Dis. 2022; 10(4): 1470–93. https://doi.org/10.1016/j.gendis.2022.09.004Wu Y., Chen Z., Darwish W.S., Terada K., Chiba H., Hui S.P. Choline and ethanolamine plasmalogens prevent lead-induced cytotoxicity and lipid oxidation in HepG2 cells. J. Agric. Food Chem. 2019; 67(27): 7716–25. https://doi.org/10.1021/acs.jafc.9b02485Butera A., Roy M., Zampieri C., Mammarella E., Panatta E., Melino G., et al. p53-driven lipidome influences non-cell-autonomous lysophospholipids in pancreatic cancer. Biol. Direct. 2022; 17(1): 6. https://doi.org/10.1186/s13062-022-00319-9Chaurio R.A., Janko C., Muñoz L.E., Frey B., Herrmann M., Gaipl U.S. Phospholipids: key players in apoptosis and immune regulation. Molecules. 2009; 14(12): 4892–914. https://doi.org/10.3390/molecules14124892Griffin J.L., Kauppinen R.A. Tumour metabolomics in animal models of human cancer. J. Proteome. Res. 2007; 6(2): 498–505. https://doi.org/10.1021/pr060464hIorio E., Di Vito M., Spadaro F., Ramoni C., Lococo E., Carnevale R., et al. Triacsin C inhibits the formation of 1H NMR-visible mobile lipids and lipid bodies in HuT 78 apoptotic cells. Biochim. Biophys. Acta. 2003; 1634(1–2): 1–14. https://doi.org/10.1016/j.bbalip.2003.07.001Montecillo-Aguado M., Tirado-Rodriguez B., Huerta-Yepez S. The involvement of polyunsaturated fatty acids in apoptosis mechanisms and their implications in cancer. Int. J. Mol. Sci. 2023; 24(14): 11691. https://doi.org/10.3390/ijms241411691Sun Y., Jia X., Hou L., Liu X., Gao Q. Involvement of apoptotic pathways in docosahexaenoic acid-induced benefit in prostate cancer: Pathway-focused gene expression analysis using RT2 Profile PCR Array System. Lipids Health Dis. 2017; 16(1): 59. https://doi.org/10.1186/s12944-017-0442-5Wellner N., Diep T.A., Janfelt C., Hansen H.S. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim. Biophys. Acta. 2013; 1831(3): 652–62. https://doi.org/10.1016/j.bbalip.2012.08.019Shadfar S., Parakh S., Jamali M.S., Atkin J.D. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl. Neurodegener. 2023; 12(1): 18. https://doi.org/10.1186/s40035-023-00350-4Kim Y.J., Ryu H.M., Choi J.Y., Cho J.H., Kim C.D., Park S.H., et al. Hypoxanthine causes endothelial dysfunction through oxidative stress-induced apoptosis. Biochem. Biophys. Res. Commun. 2017; 482(4): 821–27. https://doi.org/10.1016/j.bbrc.2016.11.119Virág L., Szabó C. Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J. 2001; 15(1): 99–107. https://doi.org/10.1096/fj.00-0299comSanchez-Macedo N., Feng J., Faubert B., Chang N., Elia A., Rushing E.J., et al. Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ. 2013; 20(4): 659–68. https://doi.org/10.1038/cdd.2012.168

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© , 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.