Нейротоксичность ингаляционного воздействия наночастиц оксида свинца на лабораторных животных на уровне экспрессии генов и метаболома
- Авторы: Кикоть А.М.1, Унесихина М.С.1, Шаихова Д.Р.1, Берёза И.А.1, Минигалиева И.А.1, Никогосян К.М.1, Сутункова М.П.1,2
-
Учреждения:
- ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
- ФГБОУ ВО «Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации
- Выпуск: Том 104, № 6 (2025)
- Страницы: 793-798
- Раздел: ПРОФИЛАКТИЧЕСКАЯ ТОКСИКОЛОГИЯ И ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ
- Статья опубликована: 15.12.2025
- URL: https://modernonco.orscience.ru/0016-9900/article/view/691572
- DOI: https://doi.org/10.47470/0016-9900-2025-104-6-793-798
- EDN: https://elibrary.ru/cyhiih
- ID: 691572
Цитировать
Полный текст



Аннотация
Ключевые слова
Об авторах
Анна Михайловна Кикоть
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Email: kikotam@ymrc.ru
ORCID iD: 0000-0001-8794-7288
Мария Сергеевна Унесихина
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Email: unesihinams@ymrc.ru
ORCID iD: 0000-0002-5576-365X
Дарья Рамильевна Шаихова
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Email: darya.boo@mail.ru
ORCID iD: 0000-0002-7029-3406
Иван Андреевич Берёза
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Email: berezaia@ymrc.ru
ORCID iD: 0000-0002-4109-9268
Ильзира Амировна Минигалиева
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Email: ilzira-minigalieva@yandex.ru
ORCID iD: 0000-0002-1871-8593
Карен Мерсопович Никогосян
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Email: nikoghosyankm@ymrc.ru
ORCID iD: 0009-0003-0780-5733
Марина Петровна Сутункова
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека; ФГБОУ ВО «Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации
Email: sutunkova@ymrc.ru
ORCID iD: 0000-0002-1743-7642
Список литературы
-
Sutunkova M.P., Solovyeva S.N., Chernyshov I.N., Klinova S.V., Gurvich V.B., Shur V.Ya., et al. Manifestation of systemic toxicity in rats after a short-time inhalation of lead oxide nanoparticles. Int. J. Mol. Sci. 2020; 21(3): 690. https://doi.org/10.3390/ijms21030690 Elgharabawy R.M., Alhowail A.H., Emara A.M., Aldubayan M.A., Ahmed A.S. The impact of chicory (Cichoriumintybus L.) on hemodynamic functions and oxidative stress in cardiac toxicity induced by lead oxide nanoparticles in male rats. Biomed. Pharmacother. 2021; 137: 111324. https://doi.org/10.1016/j.biopha.2021.111324 Minigaliyeva I.A., Klinova S.V., Sutunkova M.P., Ryabova Y.V., Valamina I.E., Shelomentsev I.G., et al. On the mechanisms of the cardiotoxic effect of lead oxide nanoparticles. Cardiovasc Toxicol. 2024; 24(1): 49–61. https://doi.org/10.1007/s12012-023-09814-5 Ermolin M.S., Fedotov P.S., Ivaneev A.I., Karandashev V.K., Burmistrov A.A., Tatsy Y.G. Assessment of elemental composition and properties of copper smelter-affected dust and its nano- and micron size fractions. Environ. Sci. Pollut. Res. 2016; 23(23): 23781–90. https://doi.org/10.1007/s11356-016-7637-6 Ermolin M.S., Shilobreeva S.N., Fedotov P.S. Study of the chemical composition of ash nanoparticles from the volcanoes of Kamchatka. Geochem. Int. 2023; 61(4): 348–58. https://doi.org/10.1134/S0016702923040043 Pal D., Dastoor A., Ariya P.A. Aerosols in an urban cold climate: Physical and chemical characteristics of nanoparticles. Urban Clim. 2020; 34: 100713. https://doi.org/10.1016/j.uclim.2020.100713 Bláhová L., Nováková Z., Večeřa Z., Vrlíková L., Dočekal B., Dumková J., et al. The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology. 2020; 14(2): 214–31. https://doi.org/10.1080/17435390.2019.1685696 Tulinska J., Krivosikova Z., Liskova A., Mikusova M.L., Masanova V., Rollerova E., et al. Six-week inhalation of lead oxide nanoparticles in mice affects antioxidant defense, immune response, kidneys, intestine and bones. Environ. Sci. Nano. 2022; 9(2): 751–66. https://doi.org/10.1039/D1EN00957E Aljelehawy H.A.Q. Effects of the lead, cadmium, manganese heavy metals, and magnesium oxide nanoparticles on nerve cell function in Alzheimer’s and Parkinson’s diseases. Cent. Asian J. Med. Pharm. Sci. Innov. 2022; 2(1): 25–36. https://doi.org/10.22034/CAJMPSI.2022.01.04 Кикоть А.М., Шаихова Д.Р., Берёза И.А., Минигалиева И.А., Никогосян К.М., Сутункова М.П. Изменение экспрессии генов, вовлечённых в митохондриальный путь апоптоза, при воздействии наночастиц оксида свинца. Гигиена и санитария. 2024; 103(11): 1429–33. https://doi.org/10.47470/0016-9900-2024-103-11-1429-1433 https://elibrary.ru/pkpdpm Xu D., Liang D., Guo Y., Sun Y. Endosulfan causes the alterations of DNA damage response through ATM-p53 signaling pathway in human leukemia cells. Environ. Pollut. 2018; 238: 1048–55. https://doi.org/10.1016/j.envpol.2018.03.044 Yin J., Zhou Q., Tan J., Che W., He Y. Inorganic arsenic induces MDM2, p53, and their phosphorylation and affects the MDM2/p53 complex in vitro. Environ. Sci. Pollut. Res. Int. 2022; 29(58): 88078–88. https://doi.org/10.1007/s11356-022-21986-1 Liao J., Yang F., Bai Y., Yu W., Qiao N., Han Q., et al. Metabolomics analysis reveals the effects of copper on mitochondria-mediated apoptosis in kidney of broiler chicken (Gallus gallus). J. Inorg. Biochem. 2021; 224: 111581. https://doi.org/10.1016/j.jinorgbio.2021.111581 Xia Y., Zhang X., Sun D., Gao Y., Zhang X, Wang L., et al. Effects of water-soluble components of atmospheric particulates from rare earth mining areas in China on lung cancer cell cycle. Part. Fibre. Toxicol. 2021; 18(1): 27. https://doi.org/10.1186/s12989-021-00416-z Wang Y., Sun X., Fang L., Li K., Yang P., Du L., et al. Genomic instability in adult men involved in processing electronic waste in Northern China. Environ. Int. 2018; 117: 69–81. https://doi.org/10.1016/j.envint.2018.04.027 Peker N., Gozuacik D. Autophagy as a cellular stress response mechanism in the nervous system. J. Mol. Biol. 2020; 432(8): 2560–88. https://doi.org/10.1016/j.jmb.2020.01.017 Pal P., Jha N.K., Pal D., Jha S.K., Anand U., Gopalakrishnan A.V., et al. Molecular basis of fluoride toxicities: Beyond benefits and implications in human disorders. Genes Dis. 2022; 10(4): 1470–93. https://doi.org/10.1016/j.gendis.2022.09.004 Wu Y., Chen Z., Darwish W.S., Terada K., Chiba H., Hui S.P. Choline and ethanolamine plasmalogens prevent lead-induced cytotoxicity and lipid oxidation in HepG2 cells. J. Agric. Food Chem. 2019; 67(27): 7716–25. https://doi.org/10.1021/acs.jafc.9b02485 Butera A., Roy M., Zampieri C., Mammarella E., Panatta E., Melino G., et al. p53-driven lipidome influences non-cell-autonomous lysophospholipids in pancreatic cancer. Biol. Direct. 2022; 17(1): 6. https://doi.org/10.1186/s13062-022-00319-9 Chaurio R.A., Janko C., Muñoz L.E., Frey B., Herrmann M., Gaipl U.S. Phospholipids: key players in apoptosis and immune regulation. Molecules. 2009; 14(12): 4892–914. https://doi.org/10.3390/molecules14124892 Griffin J.L., Kauppinen R.A. Tumour metabolomics in animal models of human cancer. J. Proteome. Res. 2007; 6(2): 498–505. https://doi.org/10.1021/pr060464h Iorio E., Di Vito M., Spadaro F., Ramoni C., Lococo E., Carnevale R., et al. Triacsin C inhibits the formation of 1H NMR-visible mobile lipids and lipid bodies in HuT 78 apoptotic cells. Biochim. Biophys. Acta. 2003; 1634(1–2): 1–14. https://doi.org/10.1016/j.bbalip.2003.07.001 Montecillo-Aguado M., Tirado-Rodriguez B., Huerta-Yepez S. The involvement of polyunsaturated fatty acids in apoptosis mechanisms and their implications in cancer. Int. J. Mol. Sci. 2023; 24(14): 11691. https://doi.org/10.3390/ijms241411691 Sun Y., Jia X., Hou L., Liu X., Gao Q. Involvement of apoptotic pathways in docosahexaenoic acid-induced benefit in prostate cancer: Pathway-focused gene expression analysis using RT2 Profile PCR Array System. Lipids Health Dis. 2017; 16(1): 59. https://doi.org/10.1186/s12944-017-0442-5 Wellner N., Diep T.A., Janfelt C., Hansen H.S. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim. Biophys. Acta. 2013; 1831(3): 652–62. https://doi.org/10.1016/j.bbalip.2012.08.019 Shadfar S., Parakh S., Jamali M.S., Atkin J.D. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl. Neurodegener. 2023; 12(1): 18. https://doi.org/10.1186/s40035-023-00350-4 Kim Y.J., Ryu H.M., Choi J.Y., Cho J.H., Kim C.D., Park S.H., et al. Hypoxanthine causes endothelial dysfunction through oxidative stress-induced apoptosis. Biochem. Biophys. Res. Commun. 2017; 482(4): 821–27. https://doi.org/10.1016/j.bbrc.2016.11.119 Virág L., Szabó C. Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J. 2001; 15(1): 99–107. https://doi.org/10.1096/fj.00-0299com Sanchez-Macedo N., Feng J., Faubert B., Chang N., Elia A., Rushing E.J., et al. Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ. 2013; 20(4): 659–68. https://doi.org/10.1038/cdd.2012.168
Дополнительные файлы
